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Abstract

This paper studies how to incorporate economic factors in difference-in-differences

and document their empirical relevance. We show that even under random assignment

directly adding factors with unit-specific loadings into the difference-in-differences es-

timation results in biased estimates. This bias, which we term the “bad time control

problem” arises when the treatment effect covaries with the factor variation. Researchers

often control for factor structures by using: (i) unit time trends, (ii) pre-treatment co-

variates interacted with a time trend and (iii) group-time dummies. We show that all

these methods suffer from the bad time control problem and/or omitted factor bias.

We propose two solutions to the bad time control problem. To evaluate the relevance

of the factor structure we study US housing returns with bank deregulation. Proper

control of macroeconomic factors significantly lowers the over-rejection rate of the bank

deregulation index from 34% to 7%, and the estimated factor loadings differ systemati-

cally across different geographic regions. This results in substantially altered treatment

effects.
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1 Introduction

Over the last decades with the adoption of quasi-experimental techniques identification in

economics and finance has significantly improved. We have surveyed papers in the Ameri-

can Economic Review and 12% of the published papers in 2015 and 2016 use difference-in-

differences for identification.1,2 The majority (71%) of these papers use the two-way fixed

effect (TWFE) estimator that only captures very restricted factor variation. The TWFE

estimator has also been extensively employed when studying variables that have been doc-

umented to have a factor structure (e.g., stock returns and housing returns) and it has been

shown theoretically that its omission leads to biased estimates.3 This raises a number of

questions that this paper addresses. First, if factors are observable how should they be

included in the difference-in-differences framework? Second, applied researchers use tech-

niques that partially control for the factor structure (e.g., unit time trends), but are these

techniques sufficient and unbiased? Third, if we include a factor structure does this alter

the conclusions of the difference-in-differences analysis?

An intuitive way to control for the factor structure is to augment the TWFE by allowing

for unit-specific loadings (λi) interacted with the factor realizations (Ft) in the difference-in-

differences estimation. We call this estimation technique the full-sample estimator. Despite

its intuitive appeal, we show that the full-sample estimator in general leads to biased esti-

mates of the average treatment effect on treated (ATT). Intuitively, if the true treatment

effect is time-varying, but a non-dynamic estimator is used and the true treatment effect

covaries with the factor realizations then the estimated factor loadings will capture some

of the treatment effect. The end result is estimated treatment effects that capture fac-

tor variation and therefore biased estimates of the ATT, we term this bias the “bad time

control problem.” The bad time control problem only depends on the covariance between

the treatment effect and the factor realizations implying that it exists even under random

assignment. That is introducing factors, as is common in finance, might result in bias

treatment effects in perfect experiments.

In fact, other variants of the full sample estimator are also commonly used. For example,
1A summary of our survey is attached at the end of the paper.
2de Chaisemartin, and D’Haultfoeuille (2020) report that 19% of papers published in the AER in years

2010 to 2012 use the two-way fixed effects estimator.
3Gobillon and Magnac (2016) show that in the presence of an omitted factor structure the two-way fixed

effect estimator is inconsistent.
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it is common to augment the TWFE estimator by introducing unit-specific time trends (we

denote this UTT), which is in effect the full sample estimator where factor realizations are

replaced by a time trend. In the context of divorce law, Wolfers (2006) credibly shows

that introducing time trends may result in biased treatment effects in the presence of time

variation in treatment effects. Additionally, he advocates for pre-treatment estimation of

the time trends and documents that the estimates treatment effects are extremely sensitive

to how time trends are controlled for. A related alternative is to interact pre-treatment

covariates with a time-trend (we denote this CTT - covariates time-trend), this restricts

the unit-specific loadings to a linear function of pre-treatment covariates. Since these two

augmentations are restricted versions of the full-sample estimator, they are susceptible to

the bad time control problem. In our survey, six (five) out of 21 DiD papers use the UTT

(CTT) estimators. However, only 18 out of 217 specifications combine time-trends (unit

and covariate) with a dynamic estimator.4,5 That implies for the remaining specifications,

if the true treatment effect covaries with trends the estimated ATT’s are biased.6

One solution to the bad time control problem, which we call the pre-treatment estimator,

is to only use pre-treatment variation to estimate the factor model and then subtract the

factor variation when estimating the difference. Intuitively, with this estimation procedure

factor loadings cannot be affected by time-variation in treatment.

Thus, there are two potential biases facing empirical researchers. On the one hand, in

the absence of random assignment the researcher may face omitted factor bias (Gobillon

and Magnac, 2016). And on the other hand introducing commonly used factor controls

might lead to the bad time control problem. To evaluate the empirical relevance of the two

biases we conduct placebo interventions and empirical replications using real estate returns.

We choose real estate returns for a number of reasons. First, there is extensive evidence
4For details see Appendices C and D. Dynamic treatment effects are most often used in event-strudy

graphs.
5Bailey and Goodman-Bacon (2015) interact pre-treatment covariates with a time trend while estimating

treatment effects for various event periods. Additionally, in Figures 3 and 4 in Currie, Davis, Greenstone and
Walker (2015) there are treatment effects estimated per period while factor variation is saturated using time
trends. Finally, columns 1-3 of Table 5 in Bøler, Moxnes and Ulltveit-Moe (2015) use dynamic treatment
effects and a unit time-trend.

6Another commonly used augmentation that controls for factor variation is to introduce group-time
dummies. Each group is assigned a dummy and then these dummies are interacted with dummies for time
periods (which could either represent single or multiple time periods). Intuitively, it reduces the bias from
omitting the factor structure by removing the between group factor variation. If the dummies aggregate
over multiple periods (e.g., one dummy for each five year period) then the estimator suffers from the bad
time control problem since it is possible that the dummy factor variation covaries with the treatment effect.
See section 3.3 for more details.
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that real estate returns exhibit a factor structure.7 Second, interventions are often used

where parallel trends may not hold. Specifically, we consider the deregulation index created

by Rice and Strahan (2010) which is used in conjunction with real estate returns by Favara

and Imbs (2015).8

Figure 1 reprints Figure B1 of Rice and Strahan (2010) and the picture indicates that

the coasts deregulate faster than the midwest, suggesting that deregulation is not randomly

assigned. Additionally, Kroszner and Strahan (1999) show that political economy is a

determinant of banking deregulation. Third, due to data availability, researchers often resort

to using low frequency yearly data which implies higher post-treatment factor volatility that

is not controlled for by time fixed effects. Intuitively, the benchmark model is irrelevant

when the post-treatment time tends to zero. Fourthly, the interventions studied often have

many post-treatment periods.

In designing our placebo analysis we modify the deregulation index of Rice and Strahan.

To create binary and sharp interventions (the index ranges from 0-4 and is staggered) we

randomly sample an index value and all states with a greater or equal index value are

considered treated. This maintains the spatial correlation in treatment while avoiding the

problems associated with staggered and continuous treatment. In the absence of simulated

treatment effects the TWFE estimator rejects 32% of the time. However, introducing

state time-trends results in a rejection rate of 92% and controlling for economic factor

using the full-sample estimator results in a rejection rate of 54%. In contrast, the pre-

treatment estimator with optimally selected economic factors results in a rejection rate of

8%. Our placebo analysis highlights how important choice of estimation method is for this

application.

To evaluate the empirical relevance of factors and factor estimation methods in difference-

in-differences we revisit specifications of Favara and Imbs (2015) and Zevelev (2021). In the

case of Favara and Imbs (2015), introducing optimally selected factors renders estimated
7For example, Cotter, Gabriel and Roll (2014) document the explanatory ability of macroeconomic factors

in the cross-section of MSA (metropolitan statistical area) housing returns. Further, arbitrage pricing theory
(APT) models with macroeconomic factors have been used in Chan et al. (1990), statistical factors (PCA)
are employed by Titman and Warga (1986) while equity based factors such as the Fama-French factors,
momentum and liquidity have studied in the real estate context by Peterson and Hsieh (1997), Hung and
Glascock (2010) and Cannon and Cole (2010).

8The effect of interstate banking deregulation has been extensively studied, among other things it has
been documented to lead to less pronounced business cycles (Morgan, Rime and Strahan, 2004) per capital
growth in income and output (Jayaratne and Strahan, 1996), credit costs of borrowers (Rice and Strahan,
2010), lower Income inequality (Beck, Levine and Levkov, 2010) and reallocation across sectors (Acharya,
Imbs and Sturgess, 2011).
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treatment effects insignificant both when using the full and pre-treatment estimators. We

also considered all possible factor combinations. For the full-sample estimator adding up

to 3 factors implies that only 41.9% of estimated treatment effects remain statistically sig-

nificant. For the pre-treatment estimator adding up to 3 factors implies that only 53.3%

of the treatment effects are still significant. In addition, we show that the estimated state

loadings differ systematically across U.S. regions.

Zevelev (2021) studies a Texas collateral reform. Given the importance of oil for Texas

he uses the full-sample estimator with the oil price as a factor. In addition he introduces

state time-trends. In the absence of factor controls the estimated treatment effect has the

opposite sign. This highlights the importance of using factors especially when treatment

controls are such diverse units as states. In most cases, introducing our economic factors

reduces estimated treatment effect, suggesting that economic factors are important controls.

One strength of Zevelev’s paper is that he analyses the treatment effect only considering

neighboring states and neghboring counties. In these cases, it seems as if adding factors has

a lower impact on treatment effects. Intuitively, the improved internal validity might imply

that the factor loadings of treated and control are more similar. Overall, our empirical

replications highlight the importance of factor controls.

This paper makes a number of contributions. First, we introduce the bad time control

problem that is a sibling of the bad control problem. Bad controls are controls that are

affected by treatment status while the bad time control problem arises due to a correlation

between the treatment effect value and controls (factors in our case). Second, we charac-

terize the bias of the full-sample estimator and commonly used augmentations of TWFE

estimators. Third, we show that for housing returns the TWFE estimator does not capture

sufficient factor variation, especially when interventions are at the state level and the sample

is as diverse as the entire United States.

The rest of the paper is organized as follows. Section 2 examines the related literature

while section 3 describes our theoretical results and Section 4 presents our simulations. Our

empirical evidence can be found in Section 5 and Section 6 concludes.
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2 Related Literature

Our paper contributes to the broad effort examining empirical methods in economics in

finance (Bertrand et al., 2004, Gormley and Matsa, 2014 Petersen, 2008 MacKinnon and

Webb, 2017, Roberts and Whited, 2012).

Important work challenges economic and empirical validity of the assumptions made in

the difference-in-differences framework. Karpoff and Wittry (2018) use institutional and

legal context to challenge that antitakeover laws are exogenous. They show that inference

for nine outcome variables in nine studies are significantly altered when legal and historical

context is taken into account. Additionally, Berg et al. (2021) show that spatial interaction

and competition is not consistent with the stable unit value assumption (SUTVA). Further,

Boehmer et al. (2020) document the importance of spillovers in financial regulatory exper-

iments. In a recent paper, Nyborg and Woschitz (2023) argue that difference-in-differences

models could be biased when bond yields have a term structure (a form of a factor model).

Not only is the parallel trends challenged due to economic context, Roth (2022) high-

lights the econometric difficulty in testing for parallel trends. Roth and Sant’Anna (2023)

derives a parallel trends test for non-linear functional forms. Rambachan and Roth (2023)

relax the strict parallel trends assumption and offer novel inference methods in this scenario.

Roth et al. (2022) provide an extensive review of recent work on difference-in-differences.

Given all of the above, like Gobillon and Magnac (2016) we depart from the parallel

trends assumption. Among other things they show that, given an omitted factor structure

the TWFE estimator is inconsistent (our Proposition 1 proves an analogous result). Econo-

metrically, our paper builds on this result and shows that just including factors may result

in the bad time control problem.

A recent strand of literature considers identification in an interactive fixed effect setting

(i.e., there is a factor structure, but both factors and loadings are unobserved). In an elegant

paper, Callaway and Karami (2022) show that GMM can estimate the ATT consistently

under the assumption that there exists covariates with time-invariant effects. Brown and

Butts (2023) develop an identification strategy that consistently estimates factor structure

using control samples while we mainly focus on evaluating the performance of currently

widely-used methods empirically.

Caetano et al. (2022) introduce covariates into the difference-in-difference framework
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and carefully determine under what conditions the ATT can be recovered. An additional

insight of this paper is that using the TWFE with covariates has five potential bias terms.

As such this paper carefully defines and significantly extends the bad control problem.

In their setting potential covariates are affected by treatment status and exists even if

treatment effects are homogeneous. In contrast our factors are by definition unaffected by

treatment status, but the bad time control problem does not exist if treatment effects are

time-invariant.

Another strand shows that even under parallel trends the TWFE estimator may assign

wrong and even negative weights to treated observations. The intuition for this is that with

heterogeneous and staggered treatment already treated units may become comparison units

and resulting in very poor treatment effect estimates (de Chaisemartin and D’Haultfoeuille,

2020, Borosyak, Jaravel and Spiess, 2021, Goodman-Bacon, 2021, Sun and Abraham, 2021).

The relevance of this issue and methodological choice in general for accounting and finance

is highlighted by the impressive survey contained in Baker et al. (2022).

3 Combining Factors with the DiD

In this section we describe the implications for inference using difference-in-difference when

the true data generating process has a linear factor structure. First, we characterize the bias

when the factor is omitted. Second, we establish that the full-sample estimator suffers from

the bad time control problem. Additionally, we characterize the degree to which commonly

used techniques such as unit time trends, covariate time trends, and dummy factors suffer

from the bad time control problem. Finally, we provide two solutions to researchers that

want to control for time trends. As a first possible solution, we show that combining dynamic

treatment effects with the full-sample estimator eliminates a bad time control problem. As a

second alternative, we propose and prove that the two-step pre-treatment estimator results

in unbiased estimation of both the treatment effect and factor loadings. The idea behind

this estimator is analogous to the framework developed by Brown and Butts (2023).

We start by describing our setting and assumptions. The observed sample consists

of the following set of variables {Yit, Ft, Di, Pt} where i and t indicates unit and time,

respectively. Yit is the observed outcome. The potential outcome if not treated is indicated

by Yit(0) while the potential outcome if treated is given by Yit(1). Ft is r × 1 vector of
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observed time-specific factor realizations and λi is r × 1 vector of unobserved individual-

specific corresponding factor loadings, where r is the number of factors.9,10 Di is a unit

indicator that takes the value of one when unit i belongs to the treated group. Pt is a

post-treatment indicator that takes the value of one for all t ≥ T ∗ when treatment occurs

at time T ∗. We assume that there are at least two units (N ≥ 2), one treated and one

control. Additionally, we assume that the sample covers at least three time periods and at

least two post treatment periods (T ≥ 3, T − T ∗ + 1 ≥ 2).11

Assumption 1 (Random sampling). An observed sample consists of {Yit, Di, Pt, Ft}N, T
i=1,t=1.

Observed samples are independently and identically distributed.

This standard assumption ensures that we can examine the properties of estimators.

However, importantly, it does not imply that within a particular sample our variables are

independently distributed.

Assumption 2 (Conditional parallel trends). Conditional on the factor structure, there

are parallel trends in potential outcomes.

E [Yit(0) − Yis(0) − Yjt(0) + Yjs(0)|λi, λj , Ft, Fs, Di = d1, Dj = d2, Pt = p1, Ps = p2]

=E [Yit(0) − Yis(0) − Yjt(0) + Yjs(0)|λi, λj , Ft, Fs] ∀(d1, d2, p1, p2) ∈ {0, 1}4

This assumption implies that double-demeaned (in both unit and time dimensions)

potential outcomes have the same expectation irrespective of treatment status when factor

structure is controlled for. In essence, compared to the standard parallel trends assumption

we add the requirement of conditioning on the factor structure.

Assumption 3 (Strict exogeneity). Potential outcomes are mean independent with factor

loadings and factor realizations assigned to other units and periods.

E [Yit(0)|λi, Ft] = E [Yit(0)| λ,F ]

E [Yit(1)|λi, Ft] = E [Yit(1)| λ,F ]
9For simplicity we consider a single factor, but all of our results can be generalized into a multi-factor

setting.
10Note that a time fixed effects can be represented as a factor that all units have identical loadings to.

Symmetrically, the unit fixed effect can be seen as time-invariant factor, but with unit specific loadings.
11We require at least two post-treatment periods since bad time control problem requires time-varying

treatment effects.
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Since we are introducing fixed effects we need to make the assumption of strict exo-

geneity. This assumption has two important implications. First, potential outcomes are

uncorrelated with past and future factor realizations once current the current factor real-

ization has been conditioned upon. Second, potential outcomes are uncorrelated with the

loadings of all other units.

Assumption 4 (Bilinear factor structure). The expectation of the potential outcome if not

treated is a bilinear function of λ and F .

E [Yit(0) − Yis(0) − Yjt(0) + Yjs(0)] = (λi − λj)′(Ft − Fs)

This is assumption implies that the data generating process (DGP) contains a factor

structure in addition to the fixed effects. Assuming that the factor structure is linear has

the advantage that our DGP has the best possible chance to match the linear estimators

that are frequently used in practice. Allowing for another functional form does not change

the spirit of our conclusion, but will possibly introduce other bias terms.

Assumption 5 (Stable unit treatment value assumption, SUTVA). Potential outcomes are

independent from the treatment status of other units and periods.

Yit(0), Yit(1) ⊥⊥ D−i,P−t

We assume there are no spillovers of treatment on potential outcomes across units and

time.

Assumption 6 (Stable loading and factor assumption). Factor loadings and factor real-

izations are independent of the treatment assignment of other units and periods.

λi ⊥⊥ D−i Ft ⊥⊥ P−t

We assume that there are no spillovers of treatment on loadings and factor realizations.

Our setting differs to that of Caetano et al. (2022) in that we do not assume that

covariates (factors in our case) are affected by treatment status, but we require treatment

heterogeneity (in the time dimension). Further, our settings differs from papers examining

inference in staggered difference-in-differences in that we have strict interventions (e.g., de

Chaisemartin and D’Haultfoeuille, 2020 and Goodman-Bacon, 2021), but we do require the
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assumption that trends are only parallel once the factor structure has been conditioned

upon.

In the next few sub-sections we consider whether a number of commonly used estimators

provide unbiased estimates of the average treatment effect on treated (ATT). Define ∆it =

Yit(1) − Yit(0) as the unobserved true treatment effect for each unit and period. The goal

of difference-in-differences estimators is to measure the average treatment effect on treated

(ATT),

αATT = E[∆it|Di = 1, Pt = 1].

3.1 Two-Way Fixed Effect estimator

The classical Two-Way Fixed Effect (TWFE) estimator can be defined as,

(α̂TWFE, γ̂TWFE
i , η̂TWFE

t ) = argmin
α,γ,η

{ T∑
t=1

N∑
i=1

(Yi,t − γi − ηt − αDiPt)2
}

(1)

Proposition 1. Given an omitted linear factor structure, the Two-Way Fixed Effect esti-

mator estimates α̂TWFE as,

E[α̂TWFE] = αATT + (E[λi|Di = 1] − E[λi|Di = 0])(E[Ft|Pt = 1] − E[Ft|Pt = 0]). (2)

Proof See Appendix A.2.

Thus, the TWFE estimator is in general biased. The bias term, (E[λi|Di = 1]−E[λi|Di =

0])(E[Ft|Pt = 1] − E[Ft|Pt = 0]), is non-zero if loadings of treated and control units are not

equal and the pre to post factor realizations are not equal. To arrive at the bias expression,

we double-demean the outcome variable (adjust for fixed effects) and proceed to calculate

the omitted factor bias. This result is equivalent to Eq. (21) in Gobillon and Magnac

(2016).12

Let us consider an example of how the omitted factor bias could affect the estimated

treatment effect when using the TWFE estimator. Suppose we were to examine the return

of target firms in mergers where the treatment event is the merger. Usually target firms

are smaller and therefore also are expected to have lower market betas. If stock returns

are determined by the market model, then the bias of the TWFE would be given by the
12They prove inconsistency of the difference-in-differences estimator even when the factor is deterministic.

For our purposes, we are going to treat the factor as a random variable (similar to (Bai, 2009)) since this
corresponds closer to the economic setting we are interested in.

9



difference in market betas between merging and non-merging firms multiplied by the return

difference. Intuitively, the omitted factor bias would be increasing in time, as longer time-

periods imply larger factor volatility.

Given that the TWFE estimator suffers from the omitted factor bias we now proceed

to examine a number of estimators that at least partially control for factor structures.

3.2 Full-sample estimator

If the factors are observable, one potential solution would be to simply introduce the factors

and estimate unit loadings jointly with the treatment effect. We refer to this method as the

full-sample (FS) estimator,

(α̂FS, γ̂FS
i , η̂FS

t , λ̂FS
i ) = argmin

α,γ,η,λ

{ T∑
t=1

N∑
j=1

(Yi,t − γi − ηt − λiFt − αDiPt)2
}

(3)

where λi are unit specific loadings and Ft are observable factor realizations. In practice it

is straightforward to estimate unit specific loadings, one interacts unit dummies with the

time-series of factor realizations to allow for unit specific sensitivities to the factors.

Proposition 2. When the factor realizations are exogenously determined, the FS estimator

can be expressed as,

E[α̂FS] = αATT + wF SCov(Ft,∆it|DiPt = 1). (4)

where the bias (bad time control problem) is given by wF SCov(Ft,∆it|DiPt = 1). The term

wF S is,

E

[
NTTP − 1
NTTP

· F pre − F

(1 − P )σ2
F,pre + Pσ2

F,post

]
. (5)

Proof See Appendix A.3.

Proposition 2 illustrates that only in partcular circumstances will the full-sample estima-

tor uncover the true ATT. It will be unbiased if there is no difference in factor realizations

between the pre and post treatment periods (E[Ft|Pt = 0] − E[Ft|Pt = 1]) or the factor

realizations do not covary with the treatment effect (Cov(Ft,∆it|DiPt = 1) = 0). The

mechanism behind this result is that if the true ATT is time varying, but the full sample

estimator assumes constant treatment effects and as a result estimated treatment effect may

capture factor variation.
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The covariance term in the bad time control is scaled by wF S , which mainly depends on

factor volatility. (NTTP − 1)/(NTTP ), is a degree of freedom adjustment where NT is the

number of treated units and TP is the number of post-treatment periods. The numerator

of the second part of the expression, F pre − F , captures the difference in mean factor

realizations between the pre-treatment period and the overall period, while the denominator

is the probability weighted convex combination of pre and post factor volatility. This means

that if we keep pre and post factor volatility constant, the absolute size of the full sample

bias is increasing in total factor volatility. This suggests that empirical applications where

treatment coincides with regime shifts in volatilty, such as the gloabal financial crisis are

particularly vulnerable to bad time controls.

The paper by Zevelev (2021) discussed in section 5.4 uses the full sample estimator.

Corollary 1. If the treatment effect is time invariant (∀t, ∆it = ∆i) then the full-sample

estimator is unbiased since Cov(Ft,∆i|DiPt = 1) = 0

An implication of corollary 1 is that the bias is not generated by lack of random assign-

ment. The bias is driven by the covariance in the time dimension.

Corollary 2. The bias of the full-sample estimator is independent of the unit loadings (λi),

therefore the full sample estimator is biased even under random assignment.

One implication of Corollary 2 is that the full-sample estimator may be more biased

than the classical TWFE estimator. The intuition is that if the loadings of treated and

control units are sufficiently close (E[λi|Di = 1] ≃ E[λi|Di = 0]) then the bias in the TWFE

estimator will not be large while if the treatment effect significantly covaries with the factor

then the full-sample may be more biased than the TWFE. The implication of this is that if

the researcher has close to random assignment (so limited omitted factor bias) and includes

omitted factors the result may be even more biased estimates of the ATT than if the factors

were omitted.

It is important to consider what happens to the bad time control problem as the number

of units increase and as the number of time periods increase. Intuitively, the number of

units does not affect the size of the bad time control problem since it is driven by covariances

in the time dimension. Asymptotically, the bad time control problem tends to zero as the
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ratio of treated time periods TP to total time periods (T ) (since E[Pt] can be expressed as

TP /T ) tends to zero.13

In practice, researchers add unit-specific time trends, termed unit time trend (UTT)

estimator, to control for time-varying heterogeneity. However, it is a special case of the full

sample estimator and therefore also suffers from the bad time control problem. We consider

the unit-specific linear time trend Ft = t as an example, but clearly this can be generalized

to polynomial time trends.

Corollary 3. The unit time trend (UTT) estimator is unbiased if and only if the treatment

effect is orthogonal to the linear time trend over the treated observations (Cov (∆it, t|DiPt = 1) =

0).

Proof See Appendix A.4.

Another common way to augment TWFE estimator is by adding covariates interacted

with a time trend. To avoid the bad control problem (controls that are affected by treatment

status), researchers often use pre-treatment covariates and interact them with a time trend

(e.g., Xi0 · t), which by definition is unaffected by treatment status. We show that this

augmentation may circumvent the bad control problem, but leads to a bad time control

problem.

Proposition 3. The covariate time trend estimator leads to a bad time control problem as

long as Cov (∆it, Xi0 · t|DiPt = 1) ̸= 0

Proof See Appendix A.5.

3.3 The Dummy factor estimator

A commonly used augmentation of the difference-in-differences that partially controls for

factor variation is to introduce group-time dummies. Each group is assigned a dummy (e.g.,

firms in the same industry) and then these dummies are interacted with dummies for time

periods (which could either represent single or multiple time periods). We call this control

procedure the dummy factor method. 7 out of 21 DiD papers in our survey use group-time

dummies.
13In the admittedly unrealistic setting with observable loadings and unobservable factors the full-sample

estimator would still be biased, but the bias would depend on the covariance of the loadings with treatment
heterogeneity in the unit dimension.
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The dummy factor is defined by the granularity chosen along the unit and time dimen-

sion. We examine two limiting cases of the dummy factor. First, we consider the case where

we define the group dummies Ri for |R| < N groups interacted with T period dummies

(i.e., we have the most amount of granularity in the time dimension and less than full gran-

ularity in the unit dimension). Second, we consider the case when we have N groups (i.e.,

full granularity in the unit dimension) interacted with St time periods, where |S| < T .

Proposition 4. (i) The dummy factor with R× T dummies does not suffer from the full-

sample bias. The weighting of observations is altered, implying that the ATT is generally

not estimated. (ii) The dummy factor with N × S suffers from being a convex combination

of the full-sample bias and the weighting error.

Proof See Appendix A.6.

In conclusion, the dummy factor estimate is a convex combination of of TWFE estimates

for each group. Omitted factor bias of the dummy factor estimator, compared to the TWFE

estimator, is reduced because factor structure variation across groups is eliminated. When

all groups have the same treated observation ratio, the dummy factor estimator degenerates

into the TWFE estimator.

When loadings are balanced within each group, the omitted factor bias is zero, even

though the dummy factor estimator is still biased because of the weighting issue. The

weighting issue is not as severe as in staggered DiD, because the weighting is gruaranteed

to be between 0 and 1. In other words, the estimated treatment effect term is a convex

combination of the true treatment (unlike in de Chaismartin and D’Haultfoeuille, 2020) so

it guarantees that the estimator is not negative if true treatment effects are all positive.

3.4 Pre-treatment estimator

Given a sufficiently long time-series another possible solution is to estimate factor loadings

only using pre-treatment variation and then use the estimated loadings when estimating

the ATT in the full sample. We refer to this two step procedure as the pre-treatment (PT)

estimator. First loadings are estimated over pre-treatment periods,

(λ̂PT
i ) = argmin

λ

{ T∑
t=1

(1 − Pt)
N∑

j=1
(Yi,t − γi − ηt − λiFt)2

}
(6)
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and the estimated loadings (λ̂i) are then used in the full sample when estimating the ATT,

(α̂P T , γ̂i
PT, η̂t

PT) = argmin
α,γ,η

{ T∑
t=1

N∑
j=1

(Yi,t − γi − ηt − λ̂PT
i Ft − αDiPt)2

}
. (7)

The pre-treatment estimator avoids estimated loadings capture the treatment effect

variation and therefore does not lead to biased estimation.

Proposition 5. The pre-treatment estimator results in an unbiased estimate of the Average

Treatment on Treated (ATT).

Proof See Appendix A.7.

The pre-treatment estimator has a number of advantages over the GMM estimator with

dynamic treatment effects proposed by Callaway and Karami (2022). First, recovering

the ATT and standard error using the dynamic estimator requires additional calculations.

Second, it is not completely clear how the dynamic estimator performs when treatment

is staggered. The advantages of the dynamic estimator is that it does not require a long

time-series to estimate loading and provides useful information about the treatment effect

over time.

There are multiple drawbacks of using the pre-treatment estimator. Like all imputation

estimators () it only uses part of the sammple implying that we lose power. Additionally,

we know from finance applications () that in practice loadings are likely to be time-varying.

Further, when the researcher does not know what the true factors are the pre-treatment

estimator cannot be used.

4 Simulation Evidence: Different factor estimation methods

To illustrate our theoretical findings, we simulate data according to the following data

generating process,

Yit = γi + ηt + λiFt + ∆itDi × Pt + εit (8)

γi ∼ N(0, σ2
γ) ηt ∼ N(0, σ2

η) εit ∼ N(0, σ2
ε)

γi are unit fixed effects, ηt are time fixed effects, λiFt represents the factor structure, and ∆it

is the heterogeneous and time-varying treatment effects. By construction the unit and time
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fixed effects are independent from our other key quantities. In order to allow for loading

differences between treated and control we simulate loadings as follows,

λi = Hi + µ(Di − E[Di]) Hi ∼ N(0, 1)

where the parameter µ allows us to shift the loading of treated units while maintaining a

mean loading of zero. Our factor realizations are given by,

Ft = Qt + ν(t− E[t]) Qt ∼ N(0, 1)

where the key parameter is ν that captures the time-trend of our factor. As our loadings,

our factors are modeled to have mean zero. The last ingredient of our simulation is our

treatment effects which are simulated as follows,

∆it = ATT + σ∆(ψUi + ϕVt + (1 − ψ2 − ϕ2)Wit)

corr(Ui, Pi) = ρ∆,λ corr(Vt, Qt) = ρ∆,F Ui, Vt,Wit ∼ N(0, 1)

where the true ATT is 1.0, Ui is a unit specific treatment effect, Vt is the time specific

treatment effect and the term (1 − ψ2 − ϕ2)Wit ensures that the total variance is kept

constant. Crucially, the parameter corr(Ui, Hi) = ρ∆,λ allows for a possible correlation

between the loadings and the treatment effect and similarly corr(Vt, Qt) = ρ∆,F allows for

a correlation between the treatment effect and the factor realization.

For each sample we estimate three models: (i) the TWFE estimator defined in Eq. (1),

(ii) the full-sample estimator defined in Eq. (3) and (iii) the pre-treatment estimator defined

in Eq. (6). We expect the TWFE to suffer from omitted factor bias, and we expect the full

sample estimator to perform worse than the pre-treatment estimator when ρ∆,F is different

from zero. In this setting, we expect the pre-treatment to always be unbiased.

We perform 1000 iterations for each cell. In our simulation analysis, we set number

of units N = 1000, number of treated unites NT = 0.3N = 300, number of periods T =

20, number of post-treatment periods TP = 0.5T = 10. We also set the baseline value

of stardard deviation of unit fixed effect σγ = 1, standard deviation of time fixed effect

ση = 3, standard deviation of error term σε = 3, standard deviation of treatment effect

σ∆ = 2, loadings difference between treatment group and control group µ = 0.4, linear

time trend ν = 1.5, degree of time-varition in the treatment effect ϕ = 0.6, degree of unit

heterogeneity in the treatment effect ψ = 0.6, correlation between treatment effect and

loadings ρ∆,λ = 0.6, and the correlation between treatment effect and factors ρ∆,F = 0.6.
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Table 1: Homogeneous Treatment Effects

We set σ∆ = 0 (homogeneous treatment effects). The loading difference µ and factor trend ν are the param-
eters of interest. All other parameter are the same as in our baseline setting. The mean of two-way fixed
effect estimators is displayed in the first line without any parentheses, the mean of full sample estimator is
displayed in the second line with round parentheses, and the mean of pre-treatment estimators is displayed
in the third line with square parentheses.

TWFE Estimator
(FS Estimator) Loading Difference µ
[PT Estimator] 0 0.2 0.4 0.6 0.8 1

Fa
ct

or
Tr

en
d
ν

0 0.9958 1.0075 0.9824 1.0070 1.0029 0.9969
(0.9988) (1.0044) (0.9993) (1.0036) (1.0031) (0.9941)
[0.9986] [1.0037] [0.9998] [1.0022] [1.0041] [0.9936]

0.5 0.9947 1.0437 1.1183 1.1434 1.2331 1.2454
(0.9977) (0.9964) (1.0033) (0.9995) (0.9976) (1.0000)
[0.9983] [0.9967] [1.0055] [1.0001] [0.9976] [0.9999]

1 1.0030 1.1072 1.1973 1.3525 1.4156 1.5557
(1.0018) (0.9975) (1.0015) (0.9982) (0.9966) (1.0000)
[1.0020] [0.9978] [1.0012] [0.9979] [0.9964] [0.9997]

1.5 0.9998 1.1387 1.3233 1.4781 1.6147 1.7812
(0.9991) (1.0025) (1.0032) (0.9960) (1.0007) (0.9949)
[0.9973] [1.0038] [1.0029] [0.9975] [1.0005] [0.9954]

2 1.0059 1.2167 1.4339 1.6442 1.8459 2.0769
(0.9969) (0.9960) (1.0048) (1.0059) (0.9909) (1.0000)
[0.9971] [0.9963] [1.0042] [1.0061] [0.9916] [1.0011]

2.5 1.0051 1.2607 1.5119 1.7841 2.0723 2.3543
(1.0005) (0.9957) (0.9975) (0.9989) (1.0010) (1.0055)
[1.0017] [0.9981] [0.9970] [1.0000] [0.9997] [1.0011]

Table 1 is designed to illustrate Proposition 1, that is we assume the treatment effect is

homogeneous and time in-variant. On the horizontal axis we change the loading difference

of treated and control units. In the left most column there is no loading differential while

on in the right most the loading differential is one corresponding to one standard deviation

of the loading (λ). On the vertical axis we allow for an increasing factor trend, from none

to 1.6 factor deviations. If there is no loading difference or no factor trend the TWFE is

unbiased (there is only sampling error around the true ATT of 1). However, as we move

diagonally introducing both a loading differential and factor trend the TWFE estimator gets

significantly biased. In the bottom right cell it estimates an ATT of 2.35. The full sample

estimator, however, is unbiased estimator when the treatment effect is homogeneous. The

reason is straightforward. Homogeneous treatment effects imply zero correlation between

treatment effect and factor realizations.
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Table 2: Heterogeneous Treatment Effects

The loading difference µ and factor trend ν are the parameters of interest. All other parameter are the same
as baseline setting. The mean of two-way fixed effect estimators is displayed in the first line without any
parentheses, the mean of full sample estimator is displayed in the second line with round parentheses, and
the mean of pre-treatment estimators is displayed in the third line with square parentheses.

TWFE Estimator
(FS Estimator) Loading Difference µ
[PT Estimator] 0 0.2 0.4 0.6 0.8 1

Fa
ct

or
Tr

en
d
ν

0 0.9810 1.0048 0.9698 1.0018 1.0122 0.9860
(0.9895) (1.0091) (0.9948) (0.9981) (1.0156) (0.9859)
[0.9839] [1.0009] [0.9872] [0.9971] [1.0133] [0.9827]

0.5 1.0187 1.0356 1.1295 1.1334 1.2078 1.2415
(0.9796) (0.9509) (0.9651) (0.9459) (0.9198) (0.9476)
[1.0222] [0.9886] [1.0167] [0.9900] [0.9724] [0.9959]

1 1.0046 1.1134 1.2058 1.3700 1.4069 1.5719
(0.9160) (0.9108) (0.9176) (0.9088) (0.8905) (0.9196)
[1.0036] [1.0040] [1.0098] [1.0154] [0.9877] [1.0160]

1.5 1.0067 1.1228 1.3278 1.4740 1.6078 1.7869
(0.8638) (0.8522) (0.8641) (0.8494) (0.8577) (0.8593)
[1.0042] [0.9880] [1.0074] [0.9934] [0.9936] [1.0011]

2 1.0125 1.2299 1.4341 1.6485 1.8406 2.0701
(0.8126) (0.8236) (0.8177) (0.8165) (0.7948) (0.8029)
[1.0037] [1.0095] [1.0045] [1.0104] [0.9863] [0.9943]

2.5 1.0221 1.2675 1.4957 1.8047 2.0882 2.3723
(0.7775) (0.7756) (0.7622) (0.7974) (0.7796) (0.7882)
[1.0187] [1.0049] [0.9808] [1.0207] [1.0156] [1.0191]

Turning to Table 2, we now set the σ∆ = 2 so the treatment effect is heterogeneous and

time-varying. The bias of the TWFE remains the same as with homogeneous treatment

effect. Also, as expected, the pre-treatment estimator performs as in Table 1. However,

treatment heterogeneity implies that the full sample estimator (within parentheses) becomes

biased. The bias is only present when there is a factor trend (in the first row the estimated

ATT of the full-sample estimator is 1). However as the factor trend increases and it reaches

2.5 the estimated ATT using the full sample estimator is 0.78. Finally, the estimated ATT

using the full sample estimator is independent of the loading difference as we move along

columns verifying corollary 2. Even when the treatment is randomly assigned (µ = 0 in our

case), the full sample estimator is still biased. On the contrary, as suggested by corollary

1, if the factor does not have a trend (ν = 0 in our case), the full sample estimator remains

unbiased no matter how unbalanced the treatment and control groups are.

In Table 3 we vary degree of treatment effect heterogeneity in the unit (columns) and
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Table 3: Treatment Effect Heterogeneity Asymmetry

The treatment effect unit heterogeneity ψ and time heterogeneity ϕ are the parameters of interest.
All other parameter are the same as baseline setting. The mean of two-way fixed effect estimators
is displayed in the first line without any parentheses, the mean of full sample estimator is displayed
in the second line with round parentheses, and the mean of pre-treatment estimators is displayed in
the third line with square parentheses.

TWFE Estimator
(FS Estimator) TE Unit Heterogeneity ψ
[PT Estimator] 0 0.2 0.4 0.6 0.8 1

T
E

T
im

e
H

et
er

og
en

ei
ty
ϕ

0 1.3058 1.3183 1.3084 1.3133 1.3069 1.3071
(1.0004) (1.0002) (0.9938) (1.0007) (1.0016) (1.0018)
[0.9995] [0.9996] [0.9921] [1.0032] [1.0006] [1.0008]

0.2 1.3364 1.3320 1.3163 1.3011 1.3406
(0.9508) (0.9507) (0.9590) (0.9569) (0.9551)
[1.0006] [0.9971] [1.0051] [1.0011] [1.0048]

0.4 1.2982 1.2910 1.3265 1.3445 1.3000
(0.9036) (0.8956) (0.9083) (0.9050) (0.9056)
[0.9932] [0.9904] [1.0018] [1.0072] [0.9950]

0.6 1.3183 1.3198 1.3011 1.3181 1.3062
(0.8652) (0.8617) (0.8456) (0.8640) (0.8610)
[1.0054] [1.0029] [0.9887] [1.0008] [0.9999]

0.8 1.3468 1.3248 1.2973 1.3057
(0.8226) (0.8005) (0.8023) (0.8139)
[1.0224] [0.9962] [0.9802] [0.9994]

1 1.3545
(0.7575)
[1.0132]

time (rows) dimension. Regarding the full sample estimator (within parentheses), it per-

forms the same irrespective of the amount of variance explained by unit heterogeneity

(moving across columns), but performs worse the more variance is explained by time het-

erogeneity (moving between rows). Throughout this table we have kept the baseline as-

sumption of a factor trend of ν = 1.5 illustrating that the performance of the full sample

estimator can either be degraded by the increasing factor trend (as in Table 2) or as in this

table through changing the degree of time variation in the treatment effect.

Appendix B provides additional simulations. The first table in Appendix B is designed to

verify that the necessary condition for the full sample bias is a correlation between factors

and treatment effects. Along the rows we alter the correlation between the treatment

effect and factors and along columns we alter the correlation between treatment effects and

loadings. As expected, the performance of the full sample estimator does not change with
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the correlation of treatment effects with loadings, but substantially deteriorates once the

treatment effects correlate with factor realizations.

Table Appendix B2 is designed to show that the full-sample bias is independent of the

degree of random assignment and correlation between the treatment effect and loadings.

Along both dimensions, the point estimate of the full sample estimator (within parentheses)

is always around 0.85. This illustrates that the bad time control is independent from

characteristics on the unit dimension.

5 Empirical Evidence

The goal of this section is to provide an empirical illustration of the importance of including

factors in difference-in-difference models and evaluate the performance of the discussed

estimators. We choose to focus on housing returns for several reasons. First, there is an

extensive literature highlighting the importance of factors in real estate returns (see below).

Second, the TWFE estimator is used frequently. Third, these studies often consider up to

10 years of data which means significant factor variation. Fourth, state interventions which

cluster geographically are often considered, implying that parallel trends might not hold.

We identified two papers using data from the Federal Housing Finance Agency (FHFA)

where all additional data needed is readily available. Table 4 of Favara and Imbs (2015)

studies the impact of interstate bank branching deregulation on housing returns and Table

B2 of Zevelev (2020) that studies the impact of allowing home equity loans on Texas house

prices. We revisit these two results using the full-sample and pre-treatment estimators.

There are a significant amount of factors that have been shown to be relevant in housing

returns. For example, models based on the arbitrage pricing theory (APT) with macroe-

conomic factors have been used in Chen et al. (1990), and Cotter et al. (2014), statistical

factors (PCA) are employed by Titman and Warga (1986) while equity based factors such as

the Fama-French factors, momentum and liquidity have studied in the real estate context by

Peterson and Hsieh (1997), Hung and Glascock (2010) and Cannon and Cole (2010). Given

the plethora of choice, we decided to pick the US aggregate economic factors used by Cotter,

Gabriel and Roll (2014). The factors are: the loan-to-value ratio (LTV), mortgage-backed

securities issuance (PrivMBS), payroll employment (Payems), equity markets (S&P500),

industrial production (Indpro), PPI materials prices (PPIitm), personal Income (Income),
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consumer sentiment (Umcsent), building permits (Permit1), and the Federal Funds rate

(Fedfunds).

Additionally, given that Zevelev (2021) uses the full-sample estimator with the oil price

as a factor, we include the oil price in the possible set of factors.

5.1 Factor Selection

Bai and Ng (2002) note that when the factors are observable then the factor selection

boils down to a model selection problem and the penalty term does not have to take into

account the size of the cross-section. Additionally, the Bayesian Information Criterion (BIC)

consistently estimates the number of factors unlike the Akaike Infomation Criterion (AIC)

which selects too many factors. Therefore we use the BIC for model selection with penalty

parameters based on the number of periods T .14

Table 4: Factor selection based on BIC

The factor in this table are selected based on BIC. We consider all possible factor combinations and select
the specification with the minimum BIC. In Panel A we consider the full-sample estimator and in Panel B
we consider the pre-treatment estimator. unit-level (range) indicates the data contains observations in range
and minimun data unit is unit. For example, County-level (US) sample indicates the BIC value based on
county-level data among all the united states.

Sample Granularity Optimal factor combination

Section A: Full sample estimator
US County-level Fedfunds Indpro Payems Permit1 PPIitm S&P500
US ZIP5-level Fedfunds Indpro Payems Permit1 PPIitm Umcsent S&P500 Income OilPrice
Border States ZIP5-level Fedfunds Indpro Payems PPIitm S&P500 Income OilPrice
Border ZIP5-level Border Fedfunds Indpro Permit1 PPIitm Income OilPrice

Section B: Pre-treatment estimator
US County-level Fedfunds Payems Income
US ZIP5-level Income Umcsent S&P500
Border State ZIP5-level Indpro Payems Permit1 PPIitm Income
Border ZIP5-level Indpro PPIitm

Table 4 presents the results of our model selection exercise. We perform the model

selection at different levels of granularity since Favara and Imbs (2015) use county level data

while Zevelev (2021) uses five digit zip code (Zip 5) data. Additionally, and importantly,

Zevelev (2021) considers three different samples, a sample that contains all US states, a

sample that only consider states which share a border with Texas and finally only counties

that are close to Texas state borders.
14It is important to note that factor selection based on the BIC will not necessarily select the factors that

have the largest impact on the treatment effect since it is based on maximizing the log-likelihood. It is
possible that alternative factor combinations would affect the estimated treatment effects more.
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Panel B uses the pre-treatment period for model selection. Thus, the first row of Panel A

and B performs factor selection for the Favara and Imbs (2015) setting while the remaining

rows of both panels perform model selection for the settings considered in Zevelev (2021).

In general, the selected factors make intuitive sense. Interest rates (Fedfunds), industrial

activity (Indpro) and production costs (PPIitm) are often selected.15

5.2 Placebo Interventions

In this section we use real estate return data combined with the deregulation index of Rice

and Strahan (2010) to evaluate the performance of the different estimators under placebo

interventions. An implication of using a misspecified benchmark model is some form of

bias. In turn, the bias results in the over-rejection of the null hypothesis that the estimated

treatment effect is equal to the true treatment effect. The TWFE estimator is likely to

suffer from omitted factor bias and as a result this results in biased coefficients. In contrast,

the full sample estimator, if well specified, reduces the omitted factor bias, but introduces

the bad time control problem - another form of bias and hence a source of over-rejection.

That is, the relative over-rejection rates of the two estimators are likely to vary according

to the setting of the placebo interventions. Given enough data, time-invariant loadings,

and that we have selected the "true" factors the pre-treatment estimator should not have a

biased rejection rate.

To evaluate estimators in practice we do not only consider random interventions, but

also interventions that are based on the deregulation index of Rice and Strahan (2010). Ad-

ditionally, to highlight the weakness of the full-sample estimator we also consider placebo

interventions where we introduce a dynamic treatment effect which decays over time. Fi-

nally, since we use the actual index (and therefore potentially true treatments), we consider

the actual index but its influence on pre-index returns.

It is important to note that using two-way clustered standard errors does not deal with

the over-rejection since the source of the bias that we are studying comes from the product

of the unit and time dimension. Dealing with serial correlation in each of the dimensions

separately does not deal with the product and therefore neither the omitted factor bias or
15We complement our BIC based model selection by examining which factors price the cross-section of real

estate returns using Fama-MacBeth (1973) regressions. We consider multiple sample periods and different
levels of granularity. Across specifications, we find evidence for Fedfunds, PPIitm and Income being priced
in the cross-section.
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the bad time control problem.

Specifically, we use county-level real estate return data from the Federal Housing Finance

Agency (FHFA). The data spans the period from 1976 to 2020. In order to eliminate the

impact from the potential true treatment effect, we only use data from 1976 to 1990 (the

first act in Rice and Strahan (2010) is effective at Jan 1, 1994). We implement two different

state-level placebo interventions. The first intervention is to randomly choose 25 states as

treated group and the rest are control groups like in (Bertrand, Duflo, & Mullainathan,

2004). The second one is to first randomly pick a threshold between 1 to 4 and randomly

pick a year between 1994 to 2005, and then define states with deregulation equal or higher

than the threshold in that specific year as the treated states.16. In both interventions, all

states are treated simultaneously (the intervention is non-staggered) and the treatment year

is random but selected such that there are at least three years prior and post treatment. So

the earliest treatment year is 1979 and the last possible treatment year is 1987. For each

intervention, we only keep 7 years of data (three years pre- and post-treatment) to form

placebo samples.

Besides two placebo interventions, we also implement two kinds of placebo treatments.

In the first setting, we set the placebo treatment effect to a constant zero. In the second

setting, we set the size of the placebo treatment effect into one standard deviation of the

dependent variable at the treatment year and the placebo treatment effect decays to zero in

three years. We examine the Wald test significance in which the null hypothesis is that the

estimated treatment effect is equal to the placebo treatment effect. We set the significant

level at 5% level and cluster standard errors at the state and year levels. In total, there are

four specifications we investigate: random treated states - no treatment effects, deregula-

tion states - no treatment effects, random treated states - decaying treatment effects, and

deregulation treated states - decaying treatment effects.

We simulate 1,000 samples in each specification and estimate five different models. First,

we use the plain TWFE estimator:

lnPi,t − lnPi,t−1 = γi + ηt + αDiPt + εit,

where lnPi,t − lnPi,t−1 is the real estate return from year t− 1 to t for county i, γi and ηt

16We remove cases where the number of treated state is smaller than 10 or greater than 40. (MacKinnon
& Webb, 2017), show that standard errors are biased when the number of units within a cluster is smaller
than 10.
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are county and year fixed effects, respectively.

Second, we add a linear state time-trend to the TWFE estimator:

lnPi,t − lnPi,t−1 = γi + ηt + αDiPt + λi × t+ εit,

where t is a linear time trend and λi is a state-specific loading.

Third, we use the full-sample estimator with economic factors:

lnPi,t − lnPi,t−1 = γi + ηt + αDiPt +
3∑

k=1
λkiFkt + εit,

where Fkt is the factor realization of factor k at time t and λi is the factor loading for state

i. We use the three factors selected in 5.1.

Lastly, we use the pre-treatment estimator (described in Eq. 6 and 7) instead of full-

sample estimator with state time-trend and optimally selected economic factors.

Table 5: Rejection rates of placebo Interventions

This table presents rejection rates estimated using TWFE estimator without controlling factors, full-sample
and pre-treatment estimator using state-specific time trends and economic factors Fedfunds, PPIitm and
Income. Rejection rates mean the percentage of significant Wald test results among 1,000 placebo samples
in which the null hypothesis is the estimated treatment effect is equal to the placebo treatment effect. The
standard errors calculated are clustered by state and year level. The significance level is set at 5%.

Factor Control Strategy
No

Factor
Time
Trend

Economic
Factors

Panel A: random treated states - no treatment effects
Two-way fixed effect estimator 5.2%
Full-sample estimator 5.9% 5.2%
Pre-treatment estimator 5.2% 4.6%

Panel B: deregulation states - no treatment effects
Two-way fixed effect estimator 34.1%
Full-sample estimator 30.3% 15.6%
Pre-treatment estimator 34.5% 35.3%

Panel C: random treated states - decaying treatment effects
Two-way fixed effect estimator 5.2%
Full-sample estimator 90.0% 43.5%
Pre-treatment estimator 5.2% 4.6%

Panel D: deregulation states - decaying treatment effects
Two-way fixed effect estimator 34.1%
Full-sample estimator 89.6% 38.6%
Pre-treatment estimator 34.5% 7.0%
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We expect that the TWFE estimator will be unbiased and reject 5% samples when

treatments are randomly assigned. If the TWFE estimator over-rejects, it suggests the

treatment assignment is not random and there may exist missing factors. Moreover, we

expect the full-sample estimator will overwhelmingly over-reject when there is a decaying

treatment effect, compared to the case of no treatment effects. If factors are correctly

selected, we expect the pre-treatment estimator to reject 5% samples even when treatment

is NOT randomly assigned.

The results are presented in Table 5. In Panel A when treated states are randomly

picked all of the estimators have a rejection rate of around 5%. However, in Panel C where

we maintain random treatment, but introduce a decaying treatment effect the rejection rate

of the full-sample estimator increases dramatically. The full-sample estimator with a time

trend rejects 90% of the time while it rejects 43.5% of the time with economic factors.

In Panel B, we use interventions based on the deregulation index. In this case, the

TWFE has a rejection rate of 34.1% suggesting that the parallel assumption may not hold

in this setting.

Panel D considers interventions based on the deregulation index with decaying treatment

effects. The rejection rate of the full-sample estimator is 89.8% and 38.6% when a time

trend and economic factors are used, respectively. Using economic factors the pre-treatment

estimator has a rejection rate of 7%. However, using state-level trends in conjunction with

the pre-treatment estimator does not result in an improvement over the TWFE estimator.

Figure 1 presents histograms of the t values of our estimators. The top row considers

randomly assigned interventions while the bottom row considers interventions based on the

deregulation index. The left most column displays the t values of the TWFE estimator, the

middle column considers the full-sample estimator while the right most column considers

the pre-treatment estimator. All of the plots in this figure are based on the setting with

decaying treatment effects and economic factors. Under random assignment, both the

TWFE estimator and the pre-treatment estimator perform well. However, even under

random assignment the full-sample estimator is biased. The performance of the TWFE

and full-sample estimators deteriorates substantially when we use intervention based on the

deregulation index. The distribution of the full-sample estimator is both skewed and flat

while the distribution of the TWFE estimator is right skewed. The pre-treatment estimator

is substantially better than the other two and appears close to the student´s t distribution,
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Figure 1: The distribution of t-values with decaying treatment effects

Figure 2: The distribution of t-values when treated states are determined by the deregu-

lation index, state time trends are controlled and decaying treatment effects
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but appears less smooth than under random assignment.

Figure 2 presents histograms of our t values when time trends are used instead of

economic factors. The commonly used augmentation of the TWFE estimator appears to

be more biased.

Taken together our placebo interventions suggest: (1) the choice of method matters

substantially, (2) the bad time control problem can be substantial - almost doubling the

rejection rate and (3) the pre-treatment estimator with economic factors performs close to

as expected.

5.3 Favara and Imbs (2015)

For economists and policy makers it is important to understand the impact of local credit

expansions on local asset prices. An increase in local house prices following a local credit

expansion provides evidence that non-local assets are not perfect substitutes. Favara and

Imbs (2015) use the state deregulation index introduced by Rice and Strahan (2010) to

relate increases in local credit supply to local house prices.17 Using a staggered difference-

in-difference they find that an increase in the deregulation index results in an increase in

local house prices by 1.2%.18

As with many quasi-natural experiments it is likely that deregulation is not randomly

assigned. Indeed, Kroszner and Strahan (1999) study the causes of interstate banking dereg-

ulation and comment “We find that deregulation occurs earlier in states with fewer small

banks, in states where small banks are financially weaker, and in states with more small,

presumably bank-dependent, firms. Also, a larger insurance industry delays deregulation

when banks may compete in the sale of insurance products. Interest group factors related

to the relative strength of potential winners (large banks and small firms) and losers (small

banks and the rival insurance firms) thus can explain the timing of branching deregulation

across states.” This suggests that treated and control units may have different loadings to

factors.

We incorporate a factor structure into Eq. (2) of Favara and Imbs (2015). This implies
17The effect of interstate banking deregulation has been extensively studied, among other things it has

been documented to lead to less pronounced business cycles (Morgan, Rime and Strahan, 2004) per capital
growth in Income and output (Jayaratne and Strahan, 1996), credit costs of borrowers (Rice and Strahan,
2010), lower Income inequality (Beck, Levine and Levkov, 2010) and reallocation across sectors (Acharya,
Imbs and Sturgess, 2011)

18Other papers that analyze house prices in a difference-in-difference setting includes Blickli (2018) and
Di Maggio and Kermani (2017).
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we estimate the following,

lnPc,t − lnPc,t−1 = β1Ds,t−1 + β2Ds,t−1 × ηs
c + β3Xc,t + αc + γt +

K∑
k=1

λc,k × Ft,k + εc,t

where Pc,t denotes house price index, Ds,t−1 denotes deregulation index, ηs
c denotes housing

supply (in)elasticity, Xc,t denotes county-level control variables, αc and γt are county and

year fixed effects respectively. Indexes c refers to counties, s to states, and t to years. We

add factors based on the selection procedure described above where λc,k refers to the loading

to factor k of county c and Ft,k is the factor realization of factor k at date t.

Table 6: Incorporating factors into Favara and Imbs (2015)

This table presents the original results of Favara and Imbs (2015) and our full sample estimators as well as
pre-treatment estimators. Column (1) replicates column (3) of table 4 in Favara and Imbs (2015). Columns
(2) and (3) add the factors with significant premia. Columns (4) and (5) introduce the factors selected in
Panel A of Table 3. Columns (6) and (7) add the factors selected in Panel B of Table 3. The standard errors
reported are clustered by state. ***, **, * represent significance at 10%, 5%, and 1% respectively.

Variable Original FS Est. PT Est. FS Est. PT Est. FS Est. PT Est.
(1) (2) (3) (4) (5) (6) (7)

Deregulation index 0.0122*** -0.0002 0.0009 -0.0034 -0.0029 0.0005 0.0017
(0.002) (0.006) (0.006) (0.013) (0.014) (0.006) (0.006)

Deregulation index -0.005*** -0.003 -0.004 -0.002 -0.024 -0.003 -0.003
× house supply elasticity (0.000) (0.002) (0.0024) (0.004) (0.005) (0.002) (0.002)
County-level controls Yes Yes Yes Yes Yes Yes Yes
County & Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Fedfunds × State dummies " " " " " "

Indpro × State dummies " "

Payems × State dummies " " " "

Permit1 × State dummies " "

PPIitm × State dummies " " " "

Umcsent × State dummies
SP500 × State dummies " "

Income × State dummies " " " "

The results are presented in Table 6. In all specifications, the introduction of the factors

renders the estimated treatment effect economically and statistically insignificant.

Since factor selection could be argued is somewhat arbitrary we performed the same

analysis using all possible factor combinations while considering up to nine factors. In

Table 7 we report the number of factors used and the number of significant treatment

effects and the total of factor combinations. We present results separately for the full

and pre-treatment estimators. Given the shorter time horizon there is a lower maximum

number of factors for the pre-treatment estimators and PrivMBS is not available before
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Table 7: Combinatorial Factor Selection

This table uses all possible factor combinations and record the number of significant point estimates of the
treatment effect as well as the number of factors. In the full sample case, we use all 9 factors while in the
pre-treatment case we exclude PrivMBS due to data availability.

Panel A: FS estimator
# of factors 9 8 7 6 5 4 3 2 1
# significant 0/1 0/9 0/36 0/84 1/126 7/126 20/84 25/36 9/9

[0%] [0%] [0%] [0%] [0.8%] [5.6%] [23.8%] [69.4%] [100%]
Panel B: PT estimator
# of factors 3 2 1
# significant 29/56 14/28 6/8

[51.8%] [50%] [75%]

1994 implying that it cannot be used with the pre-treatment estimator. Using the full-

sample estimator only 7 out of 126 combinations are significant when using four factors.

For the pre-treatment estimator when we include 3 factors only 29 out of 56 combinations

are statistically significant.

To examine whether there are systematic differences in loadings we display the dereg-

ulation index of Rice and Strahan (2010) taken from Favara and Imbs (2015) in Figure 3

and in Figure 4. we display our estimated state loadings. Examining the loadings visually

it seems as if they cluster geographically.

5.4 Zevelev (2021)

Zevelev (2021) studies the effect of a constitutional amendment in Texas that legalized home

equity loans. He finds that this increases Texas house prices by 4%. We introduce a factor

structure into the Zevelev’s equation (static DID) which implies we estimate,

yi,s,t = αi + θt + βDIDTexass × Postt + ΓXi,s,t +
K∑

k=1
λs,k × Ft,k + εi,s,t

where yi,s,t is log real house price index. Index i refers to five digit zip code, s refers to state

and year t. αi is zip code fixed effect while θt are time fixed effects. Texass is a dummy

variable that takes the value 1 if it is the state Texas and Postt takes the value 1 if it is in

post-treatment preiod (t ≥ 1998).

Interestingly Zevelev (2021) introduces a factor structure in some of his specifications.

He controls for the interaction between the oil price and MSA dummies as well as a time-

trend that is interacted with state dummies.
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Figure 3: Interstate Branching Deregulation Index

Figure 4: Estimated State Loadings
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Table 8: Incorporating factors into Zevelev (2021)
This table presents the original results of Zevelev (2021) and our full sample estimators as well as pre-
treatment estimators. Column (1), (5), (9) replicates column (1) to (3) of table B.2 in Zevelev (2021).
Columns (2), (6), (10) remove factor controls from Zevelev (2021). Columns (3), (7), (11) introduce the fac-
tors selected in Panel A of Table 4. Columns (4), (8), (12) add the factors selected in Panel B of Table 4.
The standard errors of full sample esitmators and pre-treatment estimators are clustered by zip-code level.
***, **, * represent significance at 10%, 5%, and 1% respectively.

Variable Original Paper Without Factor FS Estimator PT Estimator
Panel A: United States (1) (2) (3) (4)
TexasPost 0.0350*** -0.0387 -0.0123** -0.0147***

(0.0099) (0.0040) (0.0062) (0.0040)
Zipcode & Year FE " " " "

State time trend "

Oil× MSA dummies " "

Fedfunds × State dummies " "

Indpro × State dummies "

Payems × State dummies "

Permit1 × State dummies "

PPIitm × State dummies "

Umcsent × State dummies " "

SP500 × State dummies " "

Income × State dummies "

Panel B: Border States (5) (6) (7) (8)
TexasPost 0.0616*** 0.0015 0.0372*** 0.0390***

(0.0221) (0.0051) (0.0041) (0.0048)
Zipcode & Year FE " " " "

State time trend "

Oil× MSA dummies " "

Fedfunds × State dummies "

Indpro × State dummies " "

Payems × State dummies " "

Permit1 × State dummies "

PPIitm × State dummies " "
Umcsent × State dummies
SP500 × State dummies "

Income × State dummies " "

Panel C: Border Counties (9) (10) (11) (12)
TexasPost 0.0476** 0.0024 0.0032 0.0450***

(0.0151) (0.0113) (0.0095) (0.0097)
Zipcode & Year FE " " " "

State time trend "

Oil× MSA dummies " "

Fedfunds × State dummies "

Indpro × State dummies "
Payems × State dummies
Permit1 × State dummies "

PPIitm × State dummies " "
Umcsent × State dummies
SP500 × State dummies
Income × State dummies " "
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In Table 8 we introduce economic factors into Table B2 of Zevelev (2021). Panel A

provides results when we consider the entire United States. We show that without any

factor controls Zevelev’s result changes sign and is statistically significant. This highlights

the importance of including factor controls. Additionally, the point estimates of both the

full and pre-treatment estimators are negative and significant.

In Panel B, we present replication results for border states. Without factor controls the

treatment effect is rendered insignificant. Introducing optimally selected factors reduces

the treatment effects from 0.0616 to 0.039 (pre) and 0.0372 (full), but the point estimates

remain statistically significant.

Finally, in Panel C we replicate the results for border counties. Again, without factor

controls the treatment effect is rendered insignificant. This is also the case for the full

sample estimator. Interestingly, the point estimate of the pre treatment estimator is very

close to what is found in the original paper. Although the introduction of factors provides

mixed results, it is clear that they are essential for the estimated treatment effects.

6 Conclusion

For almost 30 years factor models were the standard methodology used to analyze housing

returns. The advent of quasi-experimental techniques that offer improved identification has

resulted in a shift in research methodology from factor models to difference-in-differences

estimators. We show that it is far from obvious how to incorporate the factor model into the

difference-in-differences framework. The TWFE estimator is generally biased when factors

are omitted, but so is the full-sample estimator. The TWFE estimator is preferred when

assignment is close to random while the full sample estimator is unbiased when treatment

is time-invariant.

Researchers frequently augment the TWFE estimator to control for factor variation.

We show that the resulting estimators often suffer from the bad time control problem.

In our placebo analysis we find that the full sample estimator performs worse than the

TWFE estimator suggesting that the bad time control problem is significant when studying

housing returns. Further, we revisit the results of Favara and Imbs (2015) and Zevelev (2021)

while incorporating relevant factors. In both cases we find that the factor model explains

significant variation and should therefore be included. Additionally, depending on method
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and specification the estimated treatment effect may be significantly changed. Overall,

this paper provides methods for incorporating factor models into difference-in-differences

regressions while showing that it is also necessary when studying housing returns.

Future work should consider other dependent variables which have been shown to have

a factor structure where difference-in-differences are often used. Given the importance of

factors for interest rates (e.g., Litterman and Scheinkman, 1991), we suspect that in these

applications it is particularly beneficial to augment the difference-in-differences analysis to

control for factor variation.
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Appendix A Proofs

A.1 Useful lemmas

Denote the sample mean of treatment effects on treated ∆ATT as

∆ATT =
∑

i,tDiPt∆it∑
i,tDiPt

Lemma 1. The expectation of the sample mean of treatment effects on treated is equal to

the average treatment effect on treated.

E[∆ATT] = αATT

Proof.

E
[
∆ATT]

=E

[∑
i,tDiPt∆it∑

i,tDiPt

]

=E

[
E

[ ∑
i,tDiPt∆it∑

i,tDiPt

∣∣∣∣∣ D,P

]]

=E

 1∑
i,tDiPt

∑
i,t

E [DiPt∆it| D,P ]


Since Yit(0) and Yit(1) are independent from Dj and Ps when j ̸= i and s ̸= t,

E [DiPt∆it| D,P ]

=E [DiPt∆it|Di, Pt]

=DiPt E [∆it|Di, Pt]

=1{DiPt=1} E [∆it|DiPt = 1]

In reason that E [∆it|DiPt = 1] is a constant,

E
[
∆ATT]

=E

 1∑
i,tDiPt

∑
i,t

E [DiPt∆it| D,P ]


=E [∆it|DiPt = 1]E

[∑
i,t 1{DiPt=1}∑

i,tDiPt

]

=αATT
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Denote the sample mean of λ for the treated (control) group λD (λC) as

λD =
∑

iDiλi∑
iDi

λC =
∑

i(1 −Di)λi∑
i 1 −Di

Denote the sample mean of F for the post-treatment (pre-treatment) period F post (F pre)

as

F post =
∑

t PtFt∑
i Pt

F pre =
∑

i(1 − Pt)Ft∑
i 1 − Pt

Using the method similar to lemma 1, it is not hard to verify that

E
[
λD

]
= E [λi|Di = 1]

E
[
λC

]
= E [λi|Di = 0]

E
[
F post

]
= E [Ft|Pt = 1]

E
[
F pre

]
= E [Ft|Pt = 0]

Denote the sample covariance between factor realizations Ft and individual treatment

effect ∆it as

QATT
F,∆ =

∑
i,tDiPtFt(∆it − ∆ATT)∑

i,tDiPt

Lemma 2. The expectation of the sample covariance between factor realizations and indi-

vidual treatment effect is equal to the overall covariance adjusted by degree of freedom.

E
[
QATT

F,∆

]
=

(
1 − 1

E [∑itDiPt]

)
cov (Ft,∆it|DiPt = 1)

Proof.

E
[
QATT

F,∆

]
=E

∑
i,tDiPtFt(∆it − ∆ATT)∑

i,tDiPt


=E

E
 ∑

i,tDiPtFt(∆it − ∆ATT)∑
i,tDiPt

∣∣∣∣∣∣ D,P


=E

∑
i,t E

[
DiPtFt(∆it − ∆ATT)

∣∣∣ D,P
]

∑
i,tDiPt


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Since both Ft and ∆it are independent from Dj and Ps when j ̸= i and s ̸= t,

E [DiPtFt∆it| D,P ]

=1{DiPt=1} E [Ft∆it|Di = 1, Pt = 1]

=1{DiPt=1} (cov (Ft,∆it|Di = 1, Pt = 1) + E [Ft|Pt = 1]E [∆it|Di = 1, Pt = 1])

On the other hand, ∆it is independent from Fs when s ̸= t and therefore E[Ft∆js] =

E[Ft]E[∆js] + 1{t=s}cov(Ft,∆jt). Thus, we obtain

∑
i,t

E
[
DiPtFt∆

ATT∣∣∣ D,P
]

=
∑
i,t

E

[
DiPtFt

∑
j,sDjPs∆js∑

j,sDjPs

∣∣∣∣∣ D,P

]

= 1
NDTP

E

 ∑
(i,t):DiPt=1

Ft

  ∑
(j,s):DjPs=1

∆js


= 1
NDTP

E

 ∑
(i,t):DiPt=1

Ft

 E

 ∑
(j,s):DjPs=1

∆js


+ 1
NDTP

E

 ∑
(i,t):DiPt=1

cov(Ft,∆js)


=NDTP E [Ft|Pt = 1]E [∆it|Di = 1, Pt = 1] + cov (Ft,∆it|Di = 1, Pt = 1)

Therefore, the expectation of sample covariance is

E
[
QATT

F,∆

]
=E

[
NDTP E [Ft|Pt = 1]E [∆it|Di = 1, Pt = 1] +NDTP cov (Ft,∆it|Di = 1, Pt = 1)

NDTP

]
− E

[
NDTP E [Ft|Pt = 1]E [∆it|Di = 1, Pt = 1] + cov (Ft,∆it|Di = 1, Pt = 1)

NDTP

]

=

1 − 1
E

[∑
i,tDiPt

]
 cov (Ft,∆it|Di = 1, Pt = 1)

A.2 Proof of Proposition 1

The traditional way to estimate treatment effect is the two-way fixed effect difference-in-

difference estimator. The definition of two-way fixed effect is the following.

35



(α̂TWFE, γ̂TWFE
i , η̂TWFE

t ) = argmin
α,γ,η

{ T∑
t=1

N∑
i=1

(Yit − γi − ηt − αDiPt)2
}

(9)

Given observed {Di} and {Pt}, we can regressDiPt on unit dummies, and time dummies.

The residuals are defined as uTWFE
it .

DiPt = κTWFE
i + ζTWFE

t + uTWFE
it (10)

It can be verified that the residual uTWFE
it is the two-way demeaned DiPt,

uTWFE
it = (Di −D)(Pt − P )

where D = 1
N

N∑
i=1

Di P = 1
T

N∑
t=1

Pt

In reason that uTWFE
it is the residual in regression (10), we can obtain

∀t,
∑

i

uTWFE
it = 0 ⇒

∑
i, tuTWFE

it Y1t = 0

∀i,
∑

t

uTWFE
it = 0 ⇒

∑
i, tuTWFE

it Yi1 = 0

∀(i, t) : DiPt = 1 uTWFE
it = (1 −D)(1 − P )

Then we can derive that

E

∑
i,t

uTWFE
it Yit

∣∣∣∣∣∣ D,P


=E

∑
i,t

uTWFE
it Yit(0)

∣∣∣∣∣∣ D,P

 + E

∑
i,t

uTWFE
it DiPt∆it

∣∣∣∣∣∣ D,P


=E

∑
i,t

uTWFE
it (Yit(0) − Yi1(0) − Y1t(0) + Y11(0))

∣∣∣∣∣∣ D,P

 + E

∑
i,t

uTWFE
it DiPt∆it

∣∣∣∣∣∣ D,P


=E

∑
i,t

uTWFE
it (λi − λ1)(Ft − F1)

∣∣∣∣∣∣ D,P

 + E

∑
i,t

uTWFE
it DiPt∆it

∣∣∣∣∣∣ D,P


=E

∑
i,t

uTWFE
it λiFt

∣∣∣∣∣∣ D,P

 + E

∑
i,t

uTWFE
it DiPt∆it

∣∣∣∣∣∣ D,P


Following the Frisch-Waugh-Lovell theorem, the two-way fixed effect estimator can be
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written as

E
[
α̂TWFE

∣∣∣ D,P
]

=E

[ ∑
i,t u

TWFE
it Yit∑

i,t u
TWFE
it DiPt

∣∣∣∣∣ D,P

]

=E

[ ∑
i,t u

TWFE
it DiPt∆it∑

i,t u
TWFE
it DiPt

∣∣∣∣∣ D,P

]
+ E

[ ∑
i,t u

TWFE
it λiFt∑

i,t u
TWFE
it DiPt

∣∣∣∣∣ D,P

]

=E

[ ∑
(i,t):DiPt=1 u

TWFE
it ∆it∑

(i,t):DiPt=1 u
TWFE
it

∣∣∣∣∣ D,P

]
+ E

 ∑
i

(
(Di −D)λi

) ∑
t

(
(Pt − P )Ft

)
∑

(i,t):DiPt=1(1 −D)(1 − P )

∣∣∣∣∣∣ D,P


=E

[ ∑
(i,t):DiPt=1 ∆it∑

(i,t):DiPt=1 1

∣∣∣∣∣ D,P

]
+ E

 ∑
i

(
(Di −D)λi

) ∑
t

(
(Pt − P )Ft

)
NTD(1 −D)P (1 − P )

∣∣∣∣∣∣ D,P


=E

[
∆ATT∣∣∣ D,P

]
+ E

[
(λD − λC)(FPost − FPre)

∣∣∣ D,P
]

According to lemma 1, we can get

E
[
α̂TWFE

]
=E

[
E

[
α̂TWFE

∣∣∣ D,P
]]

=αATT + (E[λi|Di = 1] − E[λi|Di = 0])(E[Ft|Pt = 1] − E[Ft|Pt = 0])

A.3 Proof of Proposition 2

Two-way fixed effect estimator totally ignores the presence of the factor structure. A

straight-forward idea is to add all the factors as control variables. To be explicit, full

sample estimator is defined as

(α̂FS, γ̂FS
i , η̂FS

t , λ̂FS
i ) = argmin

α,γ,η,λ

{ T∑
t=1

N∑
i=1

(Yit − γi − ηt − λiFt − αDiPt)2
}

(11)

Compared to TWFE estimator, a full sample estimator adds observed factor realizations

as covariates. Suppose treatment group Di, treatment time Pt and factor realizations Ft is

given, we regress DiPt on unit dummies, time dummies and factor realizations, and define

the residual as uFS
it .

DiPt = κFS
i + ζFS

t + ξFS
i Ft + uFS

it (12)
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In reason that uFS is the residual of regression (12), it satisfies the following equations.

∀t,
∑

i

uFS
it = 0

∀i,
∑

t

uFS
it = 0

∀i,
∑

t

uFS
it Ft = 0

Then it implies that

E

∑
i,t

uFS
it Yit

∣∣∣∣∣∣ D,P ,F


=E

∑
i,t

uFS
it Yit(0)

∣∣∣∣∣∣ D,P ,F

 + E

∑
i,t

uFS
it DiPt∆it

∣∣∣∣∣∣ D,P ,F


=E

∑
i,t

uFS
it (Yit(0) − Yi1(0) − Y1t(0) + Y11(0))

∣∣∣∣∣∣ D,P ,F

 + E

∑
i,t

uFS
it DiPt∆it

∣∣∣∣∣∣ D,P ,F


=E

∑
i,t

uFS
it (λi − λ1)(Ft − F1)

∣∣∣∣∣∣ D,P ,F

 + E

∑
i,t

uFS
it DiPt∆it

∣∣∣∣∣∣ D,P ,F


=E

∑
i,t

uFS
it DiPt∆it

∣∣∣∣∣∣ D,P ,F


Due to the degree of freedom, there exists multiple solutions of regression (12). However,

it does not change the values of residuals, which is what we are interested in. One of the

possible solutions is

ξFS
i = 0 if Di = 0

ξFS
i = P (1 − P )F post − F pre

σ2
F

if Di = 1

κFS
i = 0 if Di = 0

κFS
i = P − ξFS

i F if Di = 1

ζFS
t = −κFS − ξ

FS
Ft if Pt = 0

ζFS
t = −κFS − ξ

FS
Ft +D if Pt = 1

where

σ2
F = 1

T

T∑
t=1

(Ft − F )2 κFS = 1
N

N∑
i=1

κFS
i ξ

FS = 1
N

N∑
i=1

ξFS
i
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In this case, we can estimate the value of a full sample estimator. Unfortunately, the

full sample estimator is biased

E
[
α̂FS

∣∣∣ D,P ,F
]

=E

[ ∑
i,t u

FS
it Yit∑

i,t u
FS
it DiPt

∣∣∣∣∣ D,P ,F

]

=E

[ ∑
i,t u

FS
it DiPt∆it∑

i,t u
FS
it DiPt

∣∣∣∣∣ D,P ,F

]

=E

 ∑
(i,t):DiPt=1 u

FS
it ∆ATT∑

(i,t):DiPt=1 u
FS
it

∣∣∣∣∣∣ D,P ,F

 + E

 ∑
(i,t):DiPt=1 u

FS
it (∆it − ∆ATT)∑

(i,t):DiPt=1 u
FS
it

∣∣∣∣∣∣ D,P ,F


=E

[
∆ATT

∑
(i,t):DiPt=1 u

FS
it∑

(i,t):DiPt=1 u
FS
it

∣∣∣∣∣ D,P ,F

]
+ E

 ∑
(i,t):DiPt=1(1 − κFS

i − ζFS
t − ξFS

i Ft)(∆it − ∆ATT)∑
(i,t):DiPt=1 u

FS
it

∣∣∣∣∣∣ D,P ,F


=E

[
∆ATT∣∣∣ D,P ,F

]
+ (F pre − F )
σ2

F + (F post − F )(F pre − F ) E
[
QATT

F,∆

∣∣∣ D,P ,F
]

We can not get the analytical solution of E
[
α̂FS

]
without adding assumption, because

the variation of the factor σ2
F and the sample covariance QATT

F,∆ both depend on the factor

realizations in a specific sample. If we assume the factor realizations Ft are exogenously

determined (i.e. they are not random across samples), we can get a simplified expression.

E
[
α̂FS

]
=E

[
E

[
α̂FS

∣∣∣ D,P
]]

=E
[
E

[
∆ATT∣∣∣ D,P

]]
+ E

[
F pre − F

σ2
F + (F post − F )(F pre − F ) E

[
QATT

F,∆

∣∣∣ D,P
]]

=αATT + wF Scov (Ft,∆it|Di = 1, Pt = 1)

where

wF S = E

[
NTTP − 1
NTTP

· F pre − F

σ2
F + (F post − F )(F pre − F )

]

A.4 Proof of Corollary 3

In practice, researchers add unit-specific time trend, termed unit time trend (UTT) esti-

mator, to control for time-varying heterogeneity. However, it is a special case of the full

sample estimator and have the same issue of “bad time control problem”.
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We take unit-specific linear time trend Ft = t as an example. If the time trend is polyno-

mial, it does not make an essential difference. Since time trend is exogenously determined

and non-random across different samples, we can plug Ft = t into the estimation result

of the full sample estimator and get the bias of unit time trend estimator. Suppose the

treatment happens at time T − TP + 1.

E
[
α̂UTT

]
=αATT + E

[
NTTP − 1
NTTP

·
−TP

2
T 2−1

12 + T −TP
2

−TP
2

]
cov(∆it, t|DiPt = 1)

=αATT + wUTTcov(∆it, t|DiPt = 1)

where

wUTT = E
[
NTTP − 1
NTTP

· −6TP

T 2 − 1 − 3TP (T − TP )

]
< 0

A.5 Proof of Proposition 3

In order to avoid bad control problem, researchers add pre-treatment covariate interacted

with time trend termed covariate time trend (CTT) estimator. However, CTT has a similar

bias as the full sample estimator, because of “bad time control problem”. For simplicity, we

assume the time trend is a linear time trend, but the argument is also valid for polynomial

time trend. Let Zit = Xi0 · t. The definition of covariate time trend estimator is:

(α̂CTT, γ̂CTT
i , η̂CTT

t , β̂CTT) = argmin
α,γ,η,β

{ T∑
t=1

N∑
i=1

(Yit − γi − ηt − βZit − αDiPt)2
}

(13)

We regress DiPt on unit dummies, time dummies, and Zit:

DiPt = κCTT
i + ζCTT

t + ξCTTZit + uCTT
it (14)

The estimate of ξ is the coefficient of a covariant in the two-way fixed effect estimator.

ξ̂CTT =
∑

it(Di −D)(Pt − P )(Zit − Zi. − Z .t + Z)∑
it(Zit − Zi. − Z .t + Z)2

Thus, the residual of regression 14 can be written as:

uCTT
it =

(
Di −D

) (
Pt − P

)
− ξ̂CTTZit

where

Zi. =
∑T

t=1 Zit

T
Z .t =

∑N
i=1 Zit

N
Z =

∑N
i=1

∑T
t=1 Zit

NT
Z

ATT =
∑

i,tDiPtZit∑
i,tDiPt
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Denote the sample covariance between covariate time trend Zit and individual treatment

effect ∆it as

QATT
Z,∆ =

∑
i,tDiPtZit(∆it − ∆ATT)∑

i,tDiPt

In the best possible setting, researchers correctly identify the factor structure (i.e. λi =

Xi0 and Ft = t). However, the covariate time trend estimator is still subject to the bad

time control problem:

E
[
α̂CTT

∣∣∣ D,P ,Z
]

=E

[ ∑
i,t u

CTT
it Yit∑

i,t u
CTT
it DiPt

∣∣∣∣∣ D,P ,Z

]

=E

[ ∑
i,t u

CTT
it DiPt∆it∑

i,t u
CTT
it DiPt

∣∣∣∣∣ D,P ,Z

]
+ E

[ ∑
i,t u

CTT
it λiFt∑

i,t u
CTT
it DiPt

∣∣∣∣∣ D,P ,Z

]

=E

 ∑
i,t u

CTT
it DiPt∆

ATT∑
i,t u

CTT
it DiPt

∣∣∣∣∣∣ D,P ,Z

 + E

 ∑
i,t u

CTT
it DiPt

(
∆it − ∆ATT)

∑
i,t u

CTT
it DiPt

∣∣∣∣∣∣ D,P ,Z


=E

[
∆ATT∣∣∣ D,P ,Z

]
+ −ξ̂CTT

(1 −D)(1 − P ) − ξ̂CTTZ
ATT E

[
QCTT

Z,∆

∣∣∣ D,P ,Z
]

It shows that the covariate time trend estimator exists the bad time control problem in

general. Besides, the covariate time trend estimator may suffer from the misspecification

problem and generate additional bias terms if the pre-treatment covariate does not fully

correlated with the factor loading or the factor realization is not a linear time trend.

A.6 Proof of Proposition 4

A.6.1 Unit group interacted with time

Suppose gi indicates the group unit i belongs to and we define dummy factor estimator with

unit group interacted with time as

(α̂DF1, γ̂DF1
i , ω̂DF1

rt ) = argmin
α,γ,ω

{ T∑
t=1

N∑
i=1

(Yit − γi − ωgi,t − αDiPt)2
}

(15)

we regress DiPt on unit dummies, and group dummies interacted with time dummies.

DiPt = κDF1
i + θDF1

rt + uDF1
it (16)

Let Rg be the ratio of treated units overall all units in group g,

Rg =
∑

iDi1{i∈g}∑
i 1{i∈g}

41



Then, the residual of regression 16 is:

uDF1
it = (Di −Rgi)(Pt − P )

Denote ND,g is the number of treated observations in group g, λD,g is the mean of factor

loadings λ of the treated observations in group g, λC,g is the mean of factor loadings λ of

the non-treated observations in group r, and ∆ATT
g is the mean of the treatment effects ∆it

for the treated observations in group g.

Following the Frisch-Waugh-Lovell theorem, we can show that the dummy factor esti-

mator is biased in two ways.

E
[
α̂DF1

∣∣∣ D,P ,G
]

=E

[ ∑
i,t u

DF1
it Yit∑

i,t u
DF1
it DiPt

∣∣∣∣∣ D,P ,G

]

=E

[ ∑
i,t u

DF1
it ∆itDiPt∑

i,t u
DF1
it DiPt

∣∣∣∣∣ D,P ,G

]
+ E

[ ∑
i,t u

DF1
it λiFt∑

i,t u
DF1
it DiPt

∣∣∣∣∣ D,P ,G

]

=E

[ ∑
i,t(1 −Rgi)(1 − P )DiPt∆it∑

i,t(1 −Rgi)(1 − P ))DiPt

∣∣∣∣∣ D,P ,G

]

+ E

 (∑i(Di −Rgi)λi)
(∑

t(Pt − P )Ft

)
∑

i,t u
DF1
it DiPt

∣∣∣∣∣∣ D,P ,G


=E

[ ∑
i,t(1 −Rgi)DiPt∆it∑

i,t(1 −Rgi)DiPt

∣∣∣∣∣ D,P ,G

]

+ E

[
(∑i(Di −Rgi)λi)TP (F post − F )

(∑i(1 −Rgi)Di) (1 − P )TP

∣∣∣∣∣ D,P ,G

]

=E

 ∑
g NgRg(1 −Rg)∆ATT

g∑
g NgRg(1 −Rg)

∣∣∣∣∣∣ D,P ,G


+ E

 ∑
g NgRg(1 −Rg)

(
λD,r − λC,r

) (
F post − F pre

)
∑

g NgRg(1 −Rg)

∣∣∣∣∣∣ D,P ,G


Given the assignment of groups, the expectation of a dummy factor estimator can be

expressed as a convex combination of TWFE estimates for each group.

E
[
α̂DF1

∣∣∣ G
]

=
∑

g

ωDF1
g E [∆it| gi = g,Di = 1, Pt = 1]

+
∑

g

ωDF1
g (E [λi| gi = g,Di = 1] − E [λi| gi = g,Di = 0]) (E [Ft|Pt = 1] − E [Ft|Pt = 0])
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where

ωDF1
g = NgRg(1 −Rg)∑

g NgRg(1 −Rg)

We find that weighting problem can be rewritten as the true ATT plus a covariance

term like bad time control problem. The weighting issue in Chaismartin and d’Haullfulle

can be also rewrite in this way. Let RATT be the sample mean of treated unit ratios for

treatment observations and QATT
G,∆ be the sample covariance of group treatment ratio Rgi

and treatment effect ∆it for the treated observations.

R
ATT =

∑
i,tDiPtRgi∑

i,tDiPt

QATT
G,∆ =

∑
i,tDiPt

(
Rgi −G

ATT) (
∆it − ∆ATT)

∑
i,tDiPt

When loadings are balanced within each group (∀group g, E [λi| gi = g,Di = 1]−E [λi| gi = g,Di = 0]),

the omitted factor bias will be equal to zero. But then, the dummy factor estimator is still

biased because of the weighting issue. The dummy factor estimator will be shown as

E

[
E

[ ∑
i,t(1 −Rgi)DiPt∆it∑

i,t(1 −Rgi)DiPt

∣∣∣∣∣ D,P ,G

]]

=E
[
E

[
∆ATT

∣∣∣ D,P ,G
]]

− E

[
1

1 −G
ATT E

[
QDF1

G,∆

∣∣∣ D,P ,G
]]

=αATT − cov (∆it, Rgi |DiPt = 1)
1 − E [Rgi |DiPt = 1]

Fortunately, the weighting issue is not extremely severe in the dummy factor estima-

tor, because the weighting is grantee to be between 0 and 1 (unlike in Chaismartin and

d’Haullfulle) and the estimator does not become negative if true treatment effects are all

positive.

αATT − cov (∆it, Rgi |DiPt = 1)
1 − E [Rgi |DiPt = 1]

=αATT − E [∆itRgi |DiPt = 1] − E [∆it|DiPt = 1]E [Rgi |DiPt = 1]
1 − E [Rgi |DiPt = 1]

≥αATT − E [∆it|DiPt = 1] − E [∆it|DiPt = 1]E [Rgi |DiPt = 1]
1 − E [Rgi |DiPt = 1]

=αATT − αATT

=0
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A.6.2 Time group interacted with unit

Suppose ht indicates the time group that time t belongs to and we define dummy factor

estimator with time group interacted with unit as

(α̂DF2, η̂DF2
t , ω̂DF2

is ) = argmin
α,η,ω

{ T∑
t=1

N∑
i=1

(Yit − ηt − ωi,ht − αDiPt)2
}

(17)

we regress DiPt on time dummies, and time group dummies interacted with unit dummies.

DiPt = ζDF2
t + θDF2

ist
+ uDF2

it

Define Kh is the ratio of treated time periods overall all time periods in group h,

Kh =
∑

t Pt1{t∈h}∑
i 1{t∈h}

Similarly, we can get

uDF2
it = (Di −D)(Pt −Kht)

Following the Frisch-Waugh-Lovell theorem, we can show that the dummy factor esti-

mator with time group interacted with unit.

E
[
α̂DF2

∣∣∣ D,P ,K
]

=E

[ ∑
i,t u

DF2
it Yit∑

i,t u
DF2
it DiPt

∣∣∣∣∣ D,P ,K

]

=E

[ ∑
i,t u

DF2
it ∆itDiPt∑

i,t u
DF2
it DiPt

∣∣∣∣∣ D,P ,K

]
+ E

[ ∑
i,t u

DF2
it λiFt∑

i,t u
DF2
it DiPt

∣∣∣∣∣ D,P ,K

]

=E

[ ∑
i,t(1 −D)(1 −Kht)DiPt∆it∑

i,t(1 −D)DiPt(1 −Kht)

∣∣∣∣∣ D,P ,K

]

+ E


(∑

i(Di −D)λi

)
(∑t(Pt −Kht)Ft)∑

i,t u
DF2
it DiPt

∣∣∣∣∣∣ D,P ,K


=E

[ ∑
i,t(1 −Kht)DiPt∆it∑

i,t(1 −Kht)DiPt

∣∣∣∣∣ D,P ,K

]

+ E

[
ND(λD − λ) (∑t(Pt −Kht)Ft)
ND(1 −D) (∑t(Pt −Kht)Pt)

∣∣∣∣∣ D,P ,K

]

=E

[ ∑
i,t(1 −Kht)DiPt∆it∑

i,t(1 −Kht)DiPt

∣∣∣∣∣ D,P ,K

]

+ E
[ ∑

t(Pt −Kht)Ft∑
t(Pt −Kht)Pt

(
λD − λC

)∣∣∣∣ D,P ,K

]
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Because time groups are continuous in time, most of the time groups are either fully

before the treatment date or fully after the treatment date except for one group within

which the treatment takes place. This suggests most of Kh are either 0 or 1. For all time t

whose Kht = 0 or Kht = 0, it does contributes to neither the treatment effect part nor the

bias part. It means that when using a time group dummy factor only keeps the data of one

time group - the time group within which the treatment happens. However, for that time

group, the dummy factor estimator with time group interacted with unit suffers from the

bad time control problem like the one with unit group interacted with time.

A.7 Proof of Proposition 5

Given a sufficiently long time-series it is possible to estimate factor loadings only using

pre-treatment variation and then use the estimated loadings when estimating the ATT in

the full sample. We refer to this two step procedure as the pre-treatment (PT) estimator.

First loadings are estimated over pre-treatment periods,

(λ̂PT
i ) = argmin

λ

{ T∑
t=1

(1 − Pt)
N∑

i=1
(Yit − γi − ηt − λiFt)2

}

and the estimated loadings (λ̂i) are then used in the full sample when estimating the ATT,

(α̂P T , γ̂i
PT, η̂t

PT) = argmin
α,γ,η

{ T∑
t=1

N∑
i=1

(Yit − γi − ηt − λ̂PT
i Ft − αDiPt)2

}
. (18)

The pre-treatment estimator estimates the loadings using the sample of the pre-treatment

period in order to avoid estimated loadings captures the treatment effect variation.

Due to collinearity, we, without loss of generality, assume the estimated loading of unit

1 is 0 and the average of time fixed effects is 0, i.e. λ̂P T
1 = 0, ∑

t ζ
P T,k
t = 0. Define wP T,k

it

is the residual of Ft · 1i=k on unit dummies, time dummies, and the rest of factors in the

pre-treatment period.

Ft1[i = k] = κP T,k
i + ζP T,k

t +
∑

j ̸=k∧j ̸=1
ξP T,k

j Ft1[i = j] + vP T,k
it
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we can verify that

ξP T,k
i = ξP T,k

j if i ̸= k ∧ i ̸= 1 ∧ j ̸= k ∧ j ̸= 1

ϕP T,k
i = − ξP T,k

i

T − TP

∑
t:Pt=0

Ft if i ̸= k ∧ i ̸= 1

vP T,k
it = 0 if i ̸= k ∧ l ̸= 1

vP T,k
kt = −vP T,k

1t

Based on the Frisch-Waugh-Lovell theorem, the loading estimate of unit k (λ̂P T
k ) can be

written as:

λ̂P T
k =

∑
(i,t):Pt=0 v

P T,k
it Yit∑

(i,t):Pt=0 v
P T,k
it Ft1i=k

=
∑

(i,t):Pt=0 v
P T,k
it λiFt + ∑

(i,t):Pt=0 v
P T,k
it εit∑

(i,t):Pt=0 v
P T,k
it Ft1i=k

=
∑

t:Pt=0 v
P T,k
1t λ1Ft + ∑

t:Pt=0 v
P T,k
kt λkFt∑

t:Pt=0 v
P T,k
kt Ft

+
∑

(i,t):Pt=0 v
P T,k
it εit∑

(i,t):Pt=0 v
P T,k
it Ft1i=k

=
−λ1

(∑
t:Pt=0 v

P T,k
kt Ft

)
+ λk

(∑
t:Pt=0 v

P T,k
kt Ft

)
∑

t:Pt=0 v
P T,k
kt Ft

+
∑

(i,t):Pt=0 v
P T,k
it εit∑

(i,t):Pt=0 v
P T,k
it Ft1i=k

=λk − λ1 +
∑

(i,t):Pt=0 v
P T,k
it εit∑

(i,t):Pt=0 v
P T,k
it Ft1i=k

Then, we regress Yit − λ̂P T
i Ft on unit dummies, time dummies and treatment dummies and

get the pre-treatment estimator.

E
[
α̂P T

∣∣∣ D,P ,F
]

=E

[ ∑
i,t u

TWFE
it (Yit − λ̂P T

i Ft)∑
i,t u

TWFE
it DiPt

∣∣∣∣∣ D,P ,F

]

=E

[ ∑
i,t u

TWFE
it ∆itDiPt∑

i,t u
TWFE
it DiPt

∣∣∣∣∣ D,P ,F

]
+ E

[ ∑
i,t u

TWFE
it (λi − λ̂P T

i )Ft∑
i,t u

TWFE
it DiPt

∣∣∣∣∣ D,P ,F

]

=E

[ ∑
i,t:DiPt∆it∑

i,tDiPt

∣∣∣∣∣ D,P ,F

]
+ E

[ ∑
i,t u

TWFE
it λ1Ft∑

i,t u
TWFE
it DiPt

∣∣∣∣∣ D,P ,F

]

=E
[
∆ATT∣∣∣ D,P ,F

]
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We can show that pre-treatment estimator is unbiased.

E
[
α̂P T

]
=E

[
E

[
α̂P T

∣∣∣ D,P ,F
]]

=αATT
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Appendix B Additional Simulations

Table B1: Correlation between Treatment effects and Factor Structure

This table presents how estimates change along with the correlation between loadings and treatment ef-
fects ρ∆,λ and correlation between factors and treatment effects ρ∆,F . All other parameter are the same
as baseline setting. The mean of two-way fixed effect estimators is displayed in the first line without any
parentheses, the mean of full sample estimator is displayed in the second line with round parentheses, and
the mean of pre-treatment estimators is displayed in the third line with square parentheses.

TWFE Estimator
(FS Estimator) Correlation between Loadings and TE ρ∆,λ

[PT Estimator] 0 0.2 0.4 0.6 0.8 1

C
or

re
la

tio
n

be
tw

ee
n

Fa
ct

or
s

an
d

T
E
ρ

∆
,F

0 1.3161 1.3252 1.3179 1.3424 1.3471 1.3005
(1.0021) (1.0016) (1.0020) (0.9998) (1.0024) (1.0035)
[1.0098] [1.0066] [1.0067] [1.0052] [1.0024] [1.0054]

0.2 1.3315 1.3285 1.3212 1.3178 1.2856 1.3155
(0.9485) (0.9469) (0.9492) (0.9578) (0.9318) (0.9583)
[0.9956] [0.9936] [0.9965] [1.0005] [0.9825] [0.9979]

0.4 1.2988 1.2862 1.3037 1.2961 1.3558 1.2758
(0.9037) (0.8900) (0.8943) (0.8886) (0.9294) (0.8857)
[0.9938] [0.9856] [0.9914] [0.9804] [1.0273] [0.9774]

0.6 1.3206 1.3189 1.2996 1.2873 1.2742 1.3026
(0.8673) (0.8607) (0.8487) (0.8405) (0.8621) (0.8630)
[1.0077] [1.0019] [0.9825] [0.9809] [0.9919] [0.9969]

0.8 1.3433 1.3232 1.3067 1.3387 1.3221 1.2988
(0.8202) (0.8002) (0.8105) (0.8251) (0.8295) (0.8122)
[1.0189] [0.9946] [0.9966] [1.0158] [1.0121] [0.9926]

1 1.3476 1.3134 1.2950 1.2967 1.3757 1.3014
(0.7554) (0.7690) (0.7658) (0.7679) (0.7731) (0.7719)
[1.0063] [0.9971] [0.9950] [0.9910] [1.0327] [0.9987]
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Table B2: Unit Dimension Irrelevance

This table presents how estimates change along with the loading difference µ and correlation between load-
ings and treatment effects ρ∆,λ. All other parameter are the same as baseline setting. The mean of two-way
fixed effect estimators is displayed in the first line without any parentheses, the mean of full sample esti-
mator is displayed in the second line with round parentheses, and the mean of pre-treatment estimators is
displayed in the third line with square parentheses.

TWFE Estimator
(FS Estimator) Loading Difference µ
[PT Estimator] 0 0.2 0.4 0.6 0.8 1

C
or

re
la

tio
n

be
tw

ee
n

Lo
ad

in
gs

an
d

T
E
ρ

∆
,λ

0 0.9957 1.1476 1.3190 1.5148 1.6653 1.7614
(0.8554) (0.8637) (0.8699) (0.8566) (0.8532) (0.8751)
[0.9923] [0.9970] [1.0079] [1.0099] [1.0023] [1.0091]

0.2 1.0069 1.1718 1.3267 1.4874 1.5940 1.7955
(0.8571) (0.8581) (0.8621) (0.8511) (0.8386) (0.8711)
[1.0074] [1.0020] [1.0020] [0.9951] [0.9803] [1.0023]

0.4 1.0085 1.1402 1.3010 1.4801 1.6821 1.7797
(0.8631) (0.8458) (0.8455) (0.8574) (0.8884) (0.8419)
[1.0001] [0.9928] [0.9886] [0.9962] [1.0328] [0.9851]

0.6 1.0001 1.1574 1.3002 1.4449 1.5691 1.8105
(0.8668) (0.8566) (0.8493) (0.8392) (0.8648) (0.8470)
[1.0054] [1.0002] [0.9831] [0.9809] [0.9943] [0.9932]

0.8 1.0211 1.1664 1.3131 1.4811 1.6185 1.7735
(0.8709) (0.8520) (0.8637) (0.8689) (0.8757) (0.8617)
[1.0215] [0.9980] [1.0031] [1.0116] [1.0111] [0.9981]

1 1.0044 1.1412 1.2972 1.4659 1.6616 1.7427
(0.8558) (0.8436) (0.8635) (0.8798) (0.8657) (0.8638)
[1.0091] [0.9803] [0.9972] [1.0052] [1.0107] [0.9935]
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Appendix C Detailed literature review

We review 21 papers that use difference-in-difference or closely related methodology that

we found in our literature review. For each paper, we use the following presentation:

Authors (year), Title.

DiD: Which tables use difference-in-differences methodology.

Estimator: What difference-in-difference estimator is used in the respective difference-in-

differences tables.

Dimension: The unit dimension (e.g., plant), time frequency (e.g., monthly)) of the paper.

Factor Control: A description of the factor control that is used in the respective tables.

Description of variables and regressions: Brief description of the independent and

dependent variables or mechanism being tested.

Heterogeneous: Whether the paper estimates heterogeneous treatment effects. We take

a liberal classification here and describe also subsample analysis that acknowledges that the

treatment effects are heterogeneous.

Dynamic: Whether a dynamic difference-in-differences estimator is used and if so which

specifications with a factor structure use the dynamic estimator.

Staggered: Whether the difference-in-differences is staggered.

1. Collard-Wexler and de Loecker (2015), Reallocation and Technology: Evidence

from the US Steel Industry.

DiD: Tables 5, 9.

Estimator: Dummy Factor (Table 5, columns 2, 3, 4, Table 9, Columns 3, 4, 6, 7)

TWFE (Table 9, Column 8).

Dimensions: Plant × Year.

Description of factor control: Dummy Factor: Year × Firm, Year × State, Firm

× Year × State.

Description of variables and regressions: Main independent variable is a dummy

variable indicating whether a plant is vertically integrated interacted with a time

dummy. The tables measure the (negative) technology premium associated with old

technology.
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Heterogeneous: No

Dynamic: No

Staggered: The implied DiD could be staggered since plants could theoretically be

classified as vertically integrated and then change status at a later date.

2. Cicala (2015), When Does Regulation Distort Costs? Lessons from Fuel Procure-

ment in US Electricity Generation. DiD: Tables 2, 3, 4, 5, 6, 7.

Estimator: TWFE (Table 2, columns 1-6, Table 3, columns 2, 4-6, Table 4, columns

1-6, Table 6, columns 1-6, Table 7, columns 1-6) Dummy Factor (Table 3, column 3)

Unit time trend (Online Appendix Table B.5).

Dimensions: Facility × Month.

Description of factor control: Dummy Factor (Table 3, column 3) – Facility ×

Year. Unit time trend (Online Appendix Table B.5) State-specific quadratic time

trend.

Description of variables and regressions: DiD that relates deregulation to the

price paid for coal by power plants.

Heterogeneous: Yes p.432 discusses the heterogeneity of treatment effects.

Dynamic: Yes, Figure 5 presents dynamic treatment effects.

Dynamic used with factor control: No

Staggered: The deregulation is staggered.

3. Currie, Davis, Greenstone and Walker (2015), Environmental Health Risks and

Housing Values: Evidence from 1,600 Toxic Plant Openings and Closings.

DiD: Tables 2, 3, 4, 5, 6.

Estimator: Dummy Factor (Table 2, columns 1-8, Table 4, columns 1-8, Table 6,

columns 1-8), Covariates time trend (Table 2-6).

Dimensions: Plant × Year.

Description of factor control: Dummy Factor: Plant × Distance-bin, State ×

year, Plant × year, County × year. Covariates time trend: 1990 census tract charac-

teristics interacted with quadratic time trends.

Description of variables and regressions: Dependent variable pollution / birth-
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weight and independent variable is plant openings and closings.

Heterogeneous: No

Dynamic: Yes, Figure 3 and 4.

Dynamic used with factor control: Yes, Figure 3 and 4 which use Dummy Factor

and Covariates time trend. No, (Table 2, columns 1-8, Table 4, columns 1-8, Table 5,

columns 1-5, Table 6, columns 1-8)

Staggered: Yes

4. Favara and Imbs (2015), Credit Supply and the Price of Housing. Staggered.

DiD: Table 2, Table 3, Table 4, Table 6.

Estimator: TWFE (Table 2, 3, 4, 6)

Dimensions: County × Year.

Description of factor control: None

Description of variables and regressions: Dependent variables loan outcomes

and housing returns. Independent variable is state-wide banking deregulation index

(developed by Rice and Strahan, 2010).

Heterogeneous: Yes, allows for different treatment effects across counties depending

on their house price elasticity.

Dynamic: No

Staggered: Yes

5. Hackmann, Kolstad and Kowalski (2015), Adverse Selection and an Individual

Mandate: When Theory Meets Practice.

DiD: Table 2, 4.

Estimator: DiD (Table 2,4)

Dimensions: State × Year.

Description of factor control: None

Description of variables and regressions: Dependent variables are insurance

coverage, log premiums or log average costs and independent variable is regulation

change in Massachusetts that mandated insurance.

Heterogeneous: No

52



Dynamic: No

Staggered: No

6. Bailey and Goodman-Bacon (2015), The War on Poverty’s Experiment in Public

Medicine: Community Health Centers and the Mortality of Older Americans.

DiD: Table 2- 5.

Estimator: Dummy Factor (Table 2, Table 3, Table 4, Table 5) Covariate time trend

(Table 2, column 2, column 3, Table 3, Table 4, Table 5)

Dimensions: County × Year.

Description of factor control: Dummy Factor: Urban × Year, State × Year.

Covariate time trend: 1960 characteristics interacted with linear time trend: share

of population: in urban area, in rural area, under 5 years of age, 65 or older, non-

white, with 12 or more years of education, with less than 4 years of education, in

households with Income less than $3000. In households with Incomes greater than

$10000, total active MDs.

Description of variables and regressions: Dependent variable average mortality

rate and main independent variable is a dummy variables indicating the introduction

of community health centres.

Heterogeneous: Yes, Table 2, Panel A considers all ages while Panel B only con-

siders people over 50 years. Table 3 stratifies treatment effects on mortality causes

(e.g., heart disease). Table 4 stratifies treatment effects over 1960 characteristics and

census regions. Table 5 stratifies results over household Income.

Dynamic: Yes, Table 2, 3, and 4 consider dynamic treatment effects. Figures 5, 6

and 7 are dynamic.

Dynamic used with factor control: Yes, Table 2, 3, and 4 consider dynamic

treatment effects (treatment effects are estimated over different event time buckets).

Figure 5, 6 and 7. No, Table 5.

Staggered: Yes

7. Burgess, Jedwab, Miguuel, and Morjaria Padró I Miquel (2015), The Value

of Democracy: Evidence from Road Building in Kenya. DiD: Table 1, 2, 3, 5.
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Estimator: TWFE (Table 1, column 1, Table 2, column 2) Covariate time trend

(Table 1, column 2-5, Table 2, column 2 -5, Table 3, Table 5) Unit time trend (Table

1, column 5, Table 2, column 5, Table, 5 columns 3-4)

Dimensions: District × Year.

Description of factor control: Covariate time trend: Table 1, 2, 5: (Population,

area, urbanization rate) × trend, (earnings, employment, cash crops) × trend, (Main

highway, border, dist. Nairobi) × trend, District time trends. Table 3, Initial controls

× trend. Unit time trend: (Table 1, column 5, Table 2, column 5, Table, 5 columns

3-4)

Description of variables and regressions: The dependent variable is the share

of road expenditure normalized by population share. The independent variable is co-

ethnicity of president.

Heterogeneous: No

Dynamic: No

Staggered: Yes

8. Braguinsky, Ohyama, Okazaki, and Syverson (2015), Acquisitions, Productiv-

ity, and Profitability: Evidence from the Japanese Cotton Spinning Industry.

DiD: Table 2, 3 and 6.

Estimator: TWFE (Table 2, Table 3, Table 6, Columns 4-6)

Dimensions: Plant × Year.

Description of factor control: None

Description of variables and regressions: The dependent variable is the eco-

nomic performance. The main independent variable indicates whether the particular

plant was acquired.

Heterogeneous: Yes, Table 2, 3: treatment effects are stratified according to whether

the acquisition is undertaken by a serial acquirer.

Dynamic: No

Staggered: Yes

9. Pomeranz (2015), No Taxation without Information: Deterrence and Self-Enforcement
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in the Value Added Tax

DiD: Table 4, 5, 6, 7

Estimator: TWFE (Table 4, 5, 6, 7)

Dimensions: Firm × Month.

Description of factor control: None

Description of variables and regressions: The dependent variable is the line item

increase the main independent variable is letter from the tax office interacted with

line item.

Heterogeneous: No

Dynamic: Yes, Figure 2 is dynamic, tracking treatment effects over time.

Dynamic used with factor control: No factor used.

Staggered: Yes

10. de Janvry, Emerick, Gonzalez-Navarro and Sadoulet (2015), Delinking Land

Rights from Land Use: Certification and Migration in Mexico

DiD: Table 1, 4, 5, 6.

Estimator: TWFE (Table 1, Columns 1,2,3,5,6 Table 4, Columns 1-2, Table 5, Table

6 Column 1) Dummy Factor (Table 1, Column 4, Table 4, Column 3, Table 6, Column

2)

Dimensions: Household × Ejido × Year.

Description of factor control: Dummy Factor: Table 1, Column 4 (State × Time),

Table 4, Column 3 (High-yield × Time), Table 6, Column 2 (Progresa Treatment Lo-

cality × Time)

Description of variables and regressions: The main dependent variable is in an

indicator variable for whether households have a migrant and the main independent

variable is whether a geographic area has been certified.

Dynamic: No

Staggered: Yes

11. Yagan (2015), Capital Tax Reform and the Real Economy: The Effects of the 2003

Dividend Tax Cut
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DiD: Table 2, 3, 4.

Estimator: DiD (Table 2, Column 1, 3, 4, 5, 7, 8, 10, 11, Table 3, Table 4, Columns

1-2) TWFE (Table 1, Column 3, 6, 9, 12, Table 4, Column 3, Column 6).

Dimensions: Firm × Year.

Description of factor control: None. The main dependent variables are firm in-

vestment, employ compensation and firm payout. The main independent variable is

whether the firm is a C-Corp interacted with a time dummy indicating the 2003 tax

cut.

Heterogeneous: No

Dynamic: Yes, Table 4, Columns 1-6 includes dummies for each of the treatment

years.

Dynamic used with factor control: No factor used.

Staggered: No

12. Lalive, Landais and Zweimüller (2015), Market Externalities of Large Unem-

ployment Insurance Extension Programs

DiD: Table 2, 3, 4.

Estimator: TWFE (Table 2, Columns 1-2, Table 3, Table 4) Unit time trends (Table

2, Columns 3-6).

Dimensions: Firm × Year.

Description of factor control: Unit time trends: Region specific trends

Description of variables and regressions: The main dependent variable is un-

employment duration and the main independent variable indicated eligibility of the

Regional Extension Benefit Program (REBP) which extended unemployment benefits

for a large subset of Austrian workers.

Heterogeneous: Yes, treatment effects are evaluated across employment and age.

Dynamic: No

Staggered: Effectively yes since there are two treatments.

13. Muhlenbachs, Spiller, Timmins (2015), The Housing Market Impacts of Shale

Gas Development
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DiD: Table 2, 3, 4.

Estimator: Dummy Factor (Table 2, 3, 4) TWFE (Table 4)

Dimensions: Quarter × House

Description of factor control: Dummy Factor: Table 2 Panel A (County × year),

Panel B (Census tract × year), Table 3 Panel B (County × year)

Description of variables and regressions: The main dependent variable is log

sale prices of houses and the main independent variable is the number of wells at

different distances from the property as well as whether the property is reliant on

ground water.

Heterogeneous: Yes, both Table 3 and 4 considers subsamples in different panels.

Dynamic: No

Staggered: Yes, the number of wells are changing.

14. Bøler, Moxnes and Ulltveit-Moe (2015), R&D, International Sourcing, and the

Joint Impact on Firm Performance

DiD: Table 4, 5, 6, 7, 8, 9.

Estimator: TWFE (Table 4, Table 5, Columns 1-3, Table 7, Column 1, Table 8,

Column 5) Unit time trends (Table 5, Columns 4-7, Table 6, Table 7, Column 2,

Table 8, Columns 1-4, Table 9)

Dimensions: Firm × Year.

Description of factor control: Unit time trends, Table 5, Columns 4-7, Table 6,

Table 7, Column 2, Table 8, Columns 1-4, Table 9

Description of variables and regressions: The paper considers as dependent vari-

ables R&D expenditure and number of imported products and the main independent

variable captures whether the firm is eligible for tax credits.

Heterogeneous: Yes, Table 8 considers the origins of imported products.

Dynamic: Yes, Table 4, columns 1-3, Table 5, columns 1-3

Dynamic used with factor control: No (Table 4 no factor factor used, Table 5,

columns 4-7, Table 6, Table 7, columns 2, Table 8, Columns 1-4, Table 9) Yes (Table

5, columns 1-3) .

Staggered: No
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15. Duggan, Garthwaite and Goyal (2016), The Market Impacts of Pharmaceutical

Product Patents in Developing Countries: Evidence from India

DiD: Table 4, 5, 6, 7, 8.

Dimensions: Molecules × Quarter

Estimator: TWFE (Table 4, Columns 2, 4, 6, 8, Table 6, Columns 2, 4, Table 7,

Columns 2, 4, 6, 8) Unit time trends (Table 4, Columns 1, 3, 5, 7, Table 5, Table 6,

Columns 1, 3, Table 7, Columns 1, 3, 5, 7, Table 8)

Description of factor control: Unit time trends: λ × t × IEverP atent, where t is a

time indicator and IEverP atent is an indicator of whether the molecule ever has had

a patent. (Table 4, Columns 1, 3, 5, 7, Table 5, Table 6, Columns 1, 3, Table 7,

Columns 1, 3, 5, 7, Table 8)

Description of variables and regressions: The paper examines the effect of

molecule patents on prices and quantities sold.

Heterogeneous: No.

Dynamic: Yes, Figure 1, 2, 5, 6, 7, 8 and 9 are event studies.

Dynamic used with factor control: No (Table 4, Columns 1, 3, 5, 7, Table 5,

Table 6, Columns 1, 3, Table 7, columns 1, 3, 5, 7, Table 8).

Staggered: Yes

16. Jayaraman, Ray and De Véricourt (2016), Anatomy of a Contract Change

DiD: Table 2, Columns 4, 5

Estimator: DiD (Table 2, Columns 4, 5)

Dimensions: Rice output in kg × day

Description of factor control: None

Description of variables and regressions: This paper studies the effect of a con-

tract change on tea worker’s productivity.

Heterogeneous: No.

Dynamic: Yes, Figure 9 is estimated with time-varying treatment effects (one for

each of 17 weeks).

Staggered: No
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17. Hoynes, Whitmore Schanzenbach and Almond (2016), Long-Run Impacts of

Childhood Access to the Safety Net

DiD: Table 2, 3, 4, 5, 6, 7, 8, 9.

Estimator: Unit time trends & Covariate time trends (Table 2, 3, 4, 5, 6, 7, 8, 9)

Dimensions: Individual × County × Birth year

Description of factor control: Unit time trends & Covariate time trends (Table

2, 3, 4, 5, 6, 7, 8, 9), State specific cohort trend, county pre-treatment characteristics

trend.

Description of variables and regressions: This paper studies the effect of food

stamps programs on long-run health outcomes.

Heterogeneous: Yes, it is stratified across gender.

Dynamic: No

Staggered: Yes

18. Pierce and Schott (2016), The Surprisingly Swift Decline of US Manufacturing

Employment

DiD: Table 1, 2, 3, 4, 5, 6, 7, 8, 9.

Estimator: TWFE (Table 1, Table 2, Columns 1-4, 5, 6, Table 3, Columns 2-3, Table

7, Table 8, Table 9), Covariate time trend (Table 2, Column 5) Dummy factor (Table

3, Column 1, Table 4, Columns 1-4, Table 5, Columns 1-4, Table 6, Columns 1-4)

Dimensions: Industry × year.

Description of factor control: Covariate time trend (Table 2, Column 5): ln(RDGP )t×

ln(NP/Empi,t), effectively a GDP factor interacted with a covariate. Dummy factor

(Table 3, Column 1): Country × time, Country × industry, Industry × year (Table

4, 5, 6) Product × country, Country × time, Product × time.

Description of variables and regressions: This paper studies the effect of tariff

reduction on employment.

Heterogeneous: No

Dynamic: No.

Staggered: No
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19. Muralidharan, Niehaus and Sukhtankar (2016), Building State Capacity: Ev-

idence from Biometric Smartcards in India

DiD: Table 2, 7.

Estimator: TWFE (Table 2, Columns 5-8, Table 7, Columns 3-4)

Dimensions: Household / Individual × mandal-district × week.

Description of factor control: None.

Description of variables and regressions: This paper studies the impact of “smart

cards” on the functioning of the financial system.

Heterogeneous: No

Dynamic: No

Staggered: Yes

20. Sequiera, (2016), Corruption, Trade Costs, and Gains from Tariff Liberalization:

Evidence from Southern Africa

DiD: Table 5, 8, 9, 10, 11, 13, 15, 18, 19.

Estimator: DiD (Table 5, Columns 4-6, Table 8, Table 9, Table 10, Table 11, Table

13, Table 18, Table 19, Panel B), ≈ TWFE (Table 15)

Dimensions: Trade Gap × Year

Description of factor control: None.

Description of variables and regressions: This paper studies the effect of tariff

changes on trade and bribery.

Heterogeneous: No

Dynamic: No

Staggered: No

21. Koudjis and Voth (2016), Leverage and Beliefs: Personal Experience and Risk-

Taking in Margin Lending

DiD: Table 5, 6, 7 (Panel B), 8, 9, 11, 12

Estimator: ≈ TWFE (Table 5, Table 6, Table 7 Columns 3 & 6, Table 8, Table 9,

Table 11, Table 12)

Dimensions: Haircut × year
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Description of factor control: None.

Description of variables and regressions: This paper examines of unexpected

investor losses on the interest rates and haircuts charged.

Heterogeneous: Yes, treatment effects are stratified across exposure and whether it

is a loans consortium.

Dynamic: No

Staggered: No
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