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Abstract

In this paper, I explore latent connections among firms and their implications for

empirical work. These connections can be motivated by competition, peer effects,

supply chains, or common factors. I introduce a spatial framework that captures

these relations in a corporate landscape, using product similarity (Hoberg and

Philips, 2016) as a proxy for firm commonality. I find that firm commonality has

significant explanatory power of corporate outcomes such as capital expenditure and

cash holdings, altering the interpretation of commonly used explanatory variables.

Further, omitting firm commonality leads to significantly correlated error terms. I

show that the widely used firm-clustered standard errors reject up to 95%, which is

dramatically higher than the designed 5%. Finally, I provide a bootstrap solution of

standard errors to address the over-rejection problem caused by firm commonality.
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1 Introduction

Firms are not isolated islands; rather they share a web of visible and invisible relation-

ships that link their activities. There is extensive literature documenting connections

due to supply chain relationships (e.g. Kelly, Lustig, and Van Nieuwerburgh (2013), Co-

hen and Frazzini (2008), Menzly and Ozbas (2010)), competition effects (e.g. Campello

(2003), Chevalier (1995)), peer effects (e.g. Dougal, Parsons, and Titman (2015), Leary

and Roberts (2014), Gao, Ng, and Wang (2011)) and common responses to factors (e.g.

Huang and Östberg (2023), DeAngelo and Roll (2015), Korajczyk and Levy (2003)). All

these connections result in commonality in widely used corporate outcomes. This paper

characterizes these connections using spatial modeling with a novel measure of firm com-

monality and documents the implications of these connections on variable interpretations

and statistical inference.

A canonical model of corporate outcomes focuses on relationships of characteristics

within a firm. However, the prevalent commonalities between firms indicate that firm

behavior should be understood within the context of a much broader interconnected cor-

porate landscape. To capture firm commonality, I use the product specialty measure of

Hoberg and Phillips (2010, 2016) to characterize pairwise distance between all Russell

3000 firms. This measurement assesses the product similarity of firms based on text

analysis and firms that operate on comparable business models have higher common-

ality scores. The commonality score is a desired variable to characterize the corporate

landscape, since it encapsulates the similarity of firm outcomes well.

The prevailing existence and the importance of firm commonality mean that ignoring

this structure potentially leads to biased estimates and inflated t statistics. To illustrate

these problems, I develop spatial models of firms with commonality scores and evaluate

the importance of spatial dependence for corporate outcomes such as capital expenditure

and cash holdings. It is appropriate to model firm connections with spatial modeling, as

the corporate landscape intrinsically parallels the geographic landscapes. Just as lands

compose the physical world, firms compose the corporate landscape.

Using the spatial model, I find that firm commonality is highly significant and econom-

ically important in all firm outcomes and I show the conventional regression potentially

suffers bias from omitting firm commonality. For example, in the regression of capital

expenditure, after controlling for firm commonality, the economic magnitude of the im-
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pact from the conventionally used variable, firm cash flows, is reduced by 50%. Moreover,

the effect of firm commonality is significant and as large as two-thirds of the cash flow

impact.

Besides the bias problem, I also find that ignoring firm commonality causes over-

rejection in hypothesis testing and this problem still exists even under clustered standard

errors. I show that the residuals of fixed effects regressions exhibit strong spatial depen-

dence and this renders the widely used firm-clustered standard errors invalid, with an

over-reject rate up to 95%, which is much higher than the designed 5%. I continue to

show that two-way clustered standard errors is also not an adequate solution in prac-

tice, as it still over-rejects up to sevenfold. To accommodate the commonality among

firms, I propose a two-way resampling bootstrap method for standard errors and show

it solves the over-rejection problem. The intuition is that two-way resampling preserves

both the time series structure within firms and the spatial dependence across firms and

thus correctly estimates the standard errors.

A central contribution of this paper is to incorporate spatial modeling in the empirical

corporate finance framework. By evaluating firm outcomes in the context of corporate

landscape, we can have a more complete picture of firm behaviors. This paper is generally

related to studies about firm outcomes under other firms’ effects. However, the majority

of previous studies build links in an implicit local network 1, while I investigate a much

broader corporate landscape with a spatial modeling framework. The broad corporate

landscape used here has at least two advantages. On the one hand, contrary to previous

studies that treat the connections between firms as a binary relation, I take the intensity

of the connections into account since the firm commonality score is continuous. On the

other hand, the connections between firms in this paper are not as sparse as in the

previous studies, which matches the real-world data better.

The paper also contributes to recent studies that investigate the validity of current

empirical methods. I evaluate the impact of firm commonality on corporate outcomes

such as capital expenditure and cash holding, where I illustrate the significant explanatory

power of firm commonality on firm characteristics and the potential bias in commonly

used regressors. Moreover, I document the failure of widely used clustered standard

1For example, the commonly used linear-in-mean peer effect model can be expressed as a special case
of the spatial model. In this case, the commonality metric is the row standardization of a matrix in
which values are binary depending on whether two firms are defined as peers or not.
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error in the presence of spatial dependence and propose a bootstrap solution to solve the

over-rejection problem.

The rest of the paper is organized as follows: Section 2 reviews the related literature

and highlights the differences between their results and my study. Section 3 presents the

dataset and the measurement of firm commonality. Section 4 illustrates the relationship

between firm commonality and firm characteristics from various perspectives and shows

the spatial dependence of corporate outcomes. Section 5 presents empirical examples

of spatial models with firm outcomes and illustrates the potential bias in conventional

methods. Section 6 documents the failure of clustered standard errors and section 7

provides the bootstrap solution of standard errors. Section 8 draws the conclusion.

2 Related Literature

The is a large body of literature on firm decisions impacted by its peers, such as com-

petitors, suppliers/customers, or firms in proximity. This literature suggests that firm

outcomes have commonalities since connected firms are influenced by each other.

Chevalier (1995) investigates the impact of leveraged buyouts (LBOs) on supermar-

ket pricing and finds that when local rivals are highly leveraged, the market price rises

following a LBO, while when rivals have low leverages, the price falls. They interpret this

difference as an outcome of different competition dynamics and show the characteristics

of local rivals play an important role in the outcome. Campello (2003) also finds that a

firm’s performance in the product market, especially after economic shocks, depends on

the relative position of its capital structure, i.e., if the firm is more leveraged compared

to its competitors. These studies highlight that the outcomes of a firm are nuanced and

depend on factors such as its competitors’ characteristics.

Gao, Ng, and Wang (2011) studies firms’ financing policies and shows that firms

exhibit conformity to their peers in the same metropolitan statistical area (MSA). They

highlight this peer influence and conclude it is a significant factor in a firm’s decision-

making process. Besides financing policies, Dougal, Parsons, and Titman (2015) finds

that a firm’s investment choices are highly sensitive to the investments of other firms that

are headquartered nearby even though they are not in the same industry. In addition to

geographical proximity, empirical studies have considered abstract firm peers as well. One
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typical way of defining peer groups is to use the industry code. Leary and Roberts (2014)

uses the idiosyncratic shocks in peer firms’ stock return as an instrument and establishes a

causal link between a firm’s capital structure and its peer firms’ financing decision. They

show that the peer effects are more important for capital structure determination than

most previously identified determinants. In addition to a number of empirical results

indicating the importance of firm connections, Foucault and Fresard (2014) also provide

a theoretical framework where peers’ valuation matters for a firm’s investment decisions.

Besides firms’ operational and financial policies, the effects of firm relations on other

firm outcomes have also been demonstrated by existing studies. Cohen and Frazzini

(2008) and Menzly and Ozbas (2010) both find evidence of return predictability across

economically linked firms, suggesting that supply chain dependencies can influence mar-

ket behavior. These findings underscore the importance of supply chain connections in

investment strategies.

Apart from being a direct result of peer firms’ influences, firm commonality can also

come from firms having similar exposure to similar risks. DeAngelo and Roll (2015) finds

that factor structure explains around 30% of the variations of firm leverage, suggesting

that factors have significant explanatory power of capital structure. The common expo-

sure to risks can lead to commonalities across observations and thus statistical issues.

For example, Huang and Östberg (2023) shows that factor structure plays an important

role in real estate returns and causes bias in the difference-in-difference estimator.

Although there is a big strand of empirical corporate finance studying firm connec-

tions, I contribute to this area in three ways. First, instead of focusing on local peer firms

such as firms in proximity or firms in the same industry, I study a broader corporate land-

scape where each firm has a commonality score with respect to others. By incorporating

the general landscape, I illustrate the spatial structure of various firm characteristics.

Second, in my study, the commonality among firms takes continuous values from 0 to

1, which takes into account the intensity of connections compared to a simple binary

relation. Third, I illustrate the statistical issues in the current method and provide a

solution to the over-rejection problem.

My work also relates to recent studies that investigate the validity of current empirical

methods (e.g. Mitton (2021, 2022), Baker, Larcker, and Wang (2022)). Berg, Reisinger,

and Streitz (2021) discusses the impact of spillover effects on the treatment effect esti-
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mates and recommends including the average peer outcomes. Kelly (2019) finds there

is severe spatial autocorrelation in regressions residuals in the literature regarding the

persistence of a place’s modern outcomes and its characteristics in the distant past. The

author demonstrates this overlooked spatial autocorrelation is linked to the unusually

high t statistics in these studies and concludes that in most cases, the results of existing

literature can be driven by spatial noises. The paper emphasizes that the results of re-

gressions that may have spatial structures should be treated with caution without noise

simulation. However, the paper does not provide a general solution to fix the t statistic

inflation. I show in my paper that a bootstrapped standard error has the desired property

and can be used to improve the hypothesis testing.

3 Data Description

The dataset consists of two parts. The first part is the firm characteristic variables and

the second part is the measurement of commonality. For firm characteristics, I use the

variables that have been widely used in the existing finance literature. For commonality

measurement, I use the product similarity index developed in Hoberg and Phillips (2016).

This measurement is simple yet sufficient and publicly accessible.

3.1 Firm characteristics data

In this section, I provide details about the firm characteristic variables. Firm fundamen-

tals are from Compustat from 1962 to 2022 at a quarterly frequency. I focus on firms

that are included in the Russell3000 index (2,970 firms) in December 2022. By filtering

out the small firms, I keep the landscape structure simple without losing much economic

meaning. By excluding firms that are not constituents of the Russell 3000 index, I have

maintained a dataset comprising 268,672 observations across 2,887 firms. I then merge the

dataset with the TNIC (Text-based Network Industry Classification) dataset in Hoberg

and Phillips (2016). Now we have a dataset of 264,792 observations consisting of 2,766

firms.
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Table 1: Summary Statistics

Variable Obs Mean s.d. 1% Median 99%

Panel A: Russell 3000 constituents

Capital expenditure 217,211 0.028 0.047 0.000 0.013 0.211
Cash to asset ratio 243,056 0.148 0.197 0.001 0.067 0.915
Cash flow to asset 216,587 0.000 0.761 -0.232 0.012 0.108
Market-to-book ratio 234,654 2.204 19.993 0.743 1.416 10.353
Book Leverage 225,382 0.514 46.105 0.000 0.367 1.562
Size 244,841 7.263 2.083 2.104 7.295 12.205
Net working capital 198,668 1.567 415.596 -0.256 0.590 1.085
R&D expenditure 270,391 2.013 162.724 0.000 0.000 4.942
Financing cash flow 209,878 0.026 0.543 -0.248 -0.002 0.736
Dividend payment 270,391 0.462 0.499 0.000 0.000 1.000
Acquisition expense 270,391 0.011 0.045 -0.003 0.000 0.233
∆ Cash 236468 0.112 30.290 -0.167 0.000 0.417
Net equity issuance 201,895 0.014 0.143 -0.170 0.000 0.637
Net bond issuance 205,820 0.015 0.277 -0.184 0.000 0.339
Other cash 270,314 0.029 0.157 0.000 0.000 0.486
Tobin’s Q 234,654 -0.971 15.114 -9.222 -0.317 0.924

Panel B: Balanced panel for capital expenditure

Capital expenditure 31,880 0.026 0.035 0.001 0.016 0.167
Cash to asset ratio 31,880 0.139 0.147 0.002 0.088 0.680
Cash flow to asset 31,880 0.013 0.038 -0.108 0.016 0.087
Market-to-book ratio 31,880 2.296 1.883 0.766 1.731 10.283
Book Leverage 31,880 0.425 1.600 0.000 0.391 1.647
Size 31,880 7.903 1.708 4.125 7.828 12.248
Net working capital 31,880 0.596 0.248 -0.111 0.627 1.032
R&D expenditure 31,880 0.048 0.631 0.000 0.000 0.406
Financing cash flow 31,880 -0.010 0.099 -0.250 -0.013 0.354
Dividend payment 31,880 0.011 0.026 0.000 0.003 0.099
Acquisition expense 31,880 0.019 0.055 -0.001 0.000 0.294

Panel C: Balanced panel for cash holding

∆ Cash 22640 0.004 0.069 -0.142 0.000 0.190
Net equity issuance 22,640 -0.013 0.074 -0.238 -0.002 0.211
Net bond issuance 22,640 0.017 0.069 -0.126 0.000 0.296
Other cash 22,640 0.016 0.063 0.000 0.000 0.296
Market-to-book ratio 22,640 2.340 2.127 0.788 1.714 11.080
Size 22,640 7.990 1.782 4.050 7.891 12.216
Net working capital 22,640 0.595 0.229 -0.085 0.629 1.026
Capital expenditure 22,640 0.029 0.038 0.001 0.018 0.176
Cash flow to asset 22,640 0.013 0.039 -0.117 0.015 0.087
Book Leverage 22,640 0.444 1.386 0.000 0.410 1.654
Dividend payment 22,640 0.012 0.026 0.000 0.004 0.105
R&D expenditure 22,640 0.060 1.370 0.000 0.000 0.361
Acquisition expense 22,640 0.018 0.054 -0.000 0.000 0.287
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Later in section 5, I implement the spatial regression model where a fully balanced

panel dataset without missing value is required. Therefore, I created a balanced subset of

our dataset from 2013Q1 to 2022Q4. After dropping missing values, we obtain a balanced

panel of 797 firms with 43,440 observations for the capital expenditure regression or 566

firms with 22,640 observations for the cash holding regression.

The definition of variables can be found in table A.1. All variables are winsorized at

1%. Table 1 shows the summary statistics of the whole dataset and two balanced subsets.

3.2 Measuring commonality

As mentioned above, the measurement of firm commonality follows Hoberg and Phillips

(2016). In their papers, firm commonality is measured by the cosine similarity of firms’

business descriptions in their 10K filings, hereafter referred to as the commonality score.

The idea is that when firms pick similar words to describe themselves, they are likely to

have similar business models and thus higher commonality. This method puts every firm

at a specific virtual location in the corporate landscape and tells us the interconnectedness

among firms.

For a given firm i at year t, its virtual location can be represented by a vocabulary

vector Pit, with each element equal to 1 if firm i uses the given word in its business

description at year t, and zero if it does not2. The vocabulary vectors are normalized to

have a unit length as follows:

Vit =
Pit√
Pit · Pit

Vit can be interpreted as the virtual location of firm i at year t.

The commonality score wij,t between firm i and firm j at year t is therefore defined

as

wij,t = Vit · Vjt (1)

where · represents the inner product of two vectors. In fact, we can see that

wij,t =
Pit · Pjt√

∥Pit∥ × ∥Pjt∥
(2)

2The whole dictionary of vocabularies is constructed by all words appear in at least one business
descriptions at year t. The dictionary excludes words other than nouns or proper nouns, and also
excludes the words that appear in more than 25% of all business descriptions in the given year.
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which is the definition of cosine similarity of vocabulary vector Pit and Pjt.

The formula assigns each firm a virtual location based on its business description.

Each firm has a unique location and connects with other firms in the corporate landscape

based on the commonality score. A higher commonality score implies a higher correlation

in firm characteristics.

For simplicity, in the following analysis, I use a static version of the commonality

score. The static score between firm i and firm j (wij) is taken as the median value of

commonality scores wij,t across all year t3. This simplification is appropriate since wij,t

does not vary a lot across t. Table 2 shows the descriptive statistics of commonality

scores and we see that the within-firm-pair variance contributes only 15% to 25% of the

total variance.

Table 2: Describe Statistics of Commonality Scores

This table presents the descriptive statistics of commonality scores. The results illustrate three different

samples: the whole Compustat universe, constituents of Russell 3000 index, and constituents of S&P

1500 index. Column 2 to 6 display the number of firm-pair × year observations, the number of firms, the

mean value of the commonality scores, the total variance of the commonality scores, the between-firm-

pair variance of the commonality scores, and the percentage of variance explained by between variance,

respectively.

Sample range Observations Firms Mean Total Var. Btw. Var. Between %

Compustat 983,570,310 18633 0.0178 0.0014 0.0012 86.19%
Russell 3000 79,009,590 2766 0.0178 0.0013 0.0011 84.39%
S&P 1500 66,746,114 1929 0.0167 0.0010 0.0008 77.48%

The left panel of figure 1 displays the distribution of pair-wise commonality scores

of Russell 3000 constituents. As one would expect, most firms do not have a very high

commonality. 49.30% of the firm pairs have a median commonality score of 0 and 96.44%

of the firm pairs’ median commonality score is under 0.1. The distribution of commonality

scores decreases exponentially with the exception of 4 firm pairs with commonality scores

higher than 0.9. To show that this distribution is feasible under reasonable conditions,

I run a simulation with 2000 firms and a dictionary consisting of 1000 words, where

firms randomly choose 1 to 30 words from the dictionary to describe their business. The

simulation gives us a similar distribution of commonality scores.

A natural question is how the commonality score relates to the SIC code, which reflects

3Taking the mean value of commonality scores does not lead to a result change.
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(a) Real Commonality Scores (b) Simulated Commonality Scores

Figure 1: Histogram of Commonality Scores

whether firms are in the same industry or not. Figure 2 compares the two-digit SIC code

and the commonality score.

As one would expect, along the diagonal of the graph, firms within the same SIC

industry have higher commonality scores. Particularly, some industries such as Chemicals

and allied products (SIC code 28) and Depository Institutions (SIC 60) have high within-

industry commonality scores at around 0.4. This does not come as a surprise, since these

industries are highly specialized and firms are likely tightly connected.

Across SIC industries, we can see that firms with SIC code 60 to 67 have high com-

monality scores with each other. This is also aligned with our expectation since Finance,

Insurance, and Real Estate are generally seen as deeply linked industries.

Last but not least, the dark areas in the heat map are scattered around the whole

graph which means firms that are in the same industries do not necessarily have the

highest commonality scores and vice versa. This tells us the two-digit SIC code is not a

reliable replacement for firm commonality.

4 Firm Characteristics exhibits spatial dependence

4.1 Pair-wise correlation of firm characteristics

In this section, I illustrate that the clustering of firms’ characteristics indeed can be

reflected by the commonality score between them. Firms with high commonality scores

with each other show similar development with respect to their characteristics.

Empirically, I divide firm pairs into 10 decile groups based on their commonality
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Figure 2: Heatmap of Commonality Scores

scores. Then I calculate the average pair-wise correlation of firm characteristics in each

decile group. Figure 3 plots the average correlation of different firm characteristics for

each commonality score group.

As we can see from the blue line, the correlation of firm characteristics increases as

their commonality score becomes higher. Especially, for variables that closely reflect firm

decisions, such as capital expenditure, the correlation between firms is always higher than

0.2 and increases steadily with firms’ commonality scores.

For each firm pair, I categorize it into the ”same SIC” group and the ”different SIC”

group and then I divide them into commonality score decile groups and perform the same

exercise as described in the last paragraph. This analysis yields two findings. On one

hand, the SIC code is not a reliable measurement of firm commonality since firm pairs

within the same industry do not always have a higher correlation of firm characteristics.

On the other hand, even when firms are from different SIC industries, their commonality

score mirrors their correlation in important firm characteristic variables.
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(a) Book-to-Market Ratio (b) Cash Holding

(c) Capital Expenditure (d) Book Leverage

(e) Return of Asset (f) Tobin’s Q

Figure 3: Firm Characteristics Correlation Increases with Commonality Score

4.2 Interpretation of pair-wise correlation

So far, we have seen correlations among firm characteristics, but it remains a question

of how to interpret these correlations. In this section, I illustrate this question with a

simulation of a spatial autoregressive model of the corporate landscape.

An alternative way to interpret the pair-wise correlation is to directly link the spatial

autoregression coefficient ρ with the average pair-wise correlation. Specifically, we assume
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variable Xi follows a spatial autoregressive model:

Xi =
∑
j

ρWijXj + Zi

Zi
iid∼ N (0, 1)

(3)

where Xi is the characteristic of firm i, Xj is the characteristic of firm j, W is the

matrix of commonality scores and ρ is the spatial autoregression coefficient with respect

to commonality metrics W .

Equation 3 can be rewritten in matrix form,

X = ρWX +Z

where X is a N × 1 vector, W is a N ×N matrix and Z is a N × 1 vector.

Solving for X, we have,

X = (In − ρW )−1Z

=
∞∑
i=1

(ρW )i Z

= ρWZ + ρ2W 2Z + ρ3W 3Z + · · ·

as long as the inverse of (In − ρW ) exists, i.e.,
∑∞

i=1 (ρW )i converges.

I conduct a simulation according to the spatial autoregressive model described above,

using the real commonality score matrix W . Figure 4 shows the relationship between the

coefficient ρ and average pair-wise correlation. As ρ approaches 1, the average correlation

increases rapidly towards 1. For example, when we take ρ = 0.8, we have an average

pairwise correlation of 0.028, but when ρ = 0.95, the average correlation rises to 0.27.

4.3 Moran’s I statistics

Now that we have an intuitive understanding of spatial autocorrelation and its rela-

tionship with the correlation of firm characteristics, we examine the coefficient ρ in our

dataset formally using Moran’s I statistics (Moran (1950)). Moran’s I is a widely used

global index that measures the similarity of values in neighboring places from an overall

mean value and reflects a spatially weighted form of Pearson’s correlation coefficient. The
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Figure 4: Average pair-wise correlation in Corporate Landscape

formula of the test statistics is,

I =
N

W

∑N
i=1

∑N
j=1wij

(
Xi − X̄

) (
Xj − X̄

)∑N
i=1

(
Xi − X̄

)2
where N is the number of firms (spatial units) indexed by i and j, X is the variable of

interest, X̄ is the mean of the variable, wij is the i,j-th element of the matrix W and W

is the sum of all wij, i.e., W =
∑N

i=1

∑N
j=1wij.

The basic idea of the test is that if ρ = 0 is true, then the permutation between

Xi’s does not change the distribution of the test statistic. Therefore, I permute the

Xi’s uniformly at random and obtain the distribution of the test statistic under the null

hypothesis. Using this distribution, the Moran’s I value can be transformed into a Z-score

by taking the difference between the sample Moran’s I and the mean of the distribution

and dividing it by the variance.

Table 3 presents the test results of various widely-used firm characteristics. Surpris-
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ingly yet aligned with our expectation, we find that all these variables have a highly

significant spatial structure.

Table 3: Moran’s I statistics

This table presents Moran’s I statistics of commonality scores. The mean, standard deviation, Z-score,

and P-value of Moran’s I statistics are calculated by conducting a random permutation procedure 999

times.

Variable Moran’s I Mean Std dev Z-score P-value

Book-to-Market Ratio 0.0550 -0.0004 0.0012 44.6896 0.0000
Cash Holding 0.6301 -0.0004 0.0010 612.8756 0.0000
Capital Expenditure 0.1907 -0.0004 0.0010 185.1099 0.0000
Book Leverage 0.0628 -0.0004 0.0011 58.5502 0.0000
Return of Asset 0.3022 -0.0004 0.0010 294.0209 0.0000
Tobin’s Q 0.2495 -0.0004 0.0011 242.9228 0.0000

5 Empirical Examples with Firm Commonality

Simulations have shown concerning results regarding the validity of the regression. In

this section, I use the real-world dataset and provide two empirical examples of capital

expenditure and cash holding, showing that fixed effects estimators without accounting

for firm commonality lead to potentially biased estimates.

5.1 Firm Commonality in TWFE Residuals

Figure 5 shows that the residual of a two-way fixed effect (TWFE) regression does not

have a pattern of independent and identically distributed variables. To be more specific,

had the residuals been independent and identically distributed, the lines in the graph

should be horizontal and should be at the 0 level.

On the opposite, the residuals show a strong spatial dependence pattern. In other

words, when a firm pair has a higher commonality score, these two firms’ residuals also

have a higher correlation. This correlation should not be overlooked. Take the capital

expenditure graph as an example, as the firm commonality score increases to its highest

decile, the correlation between firms’ residuals increases notably to 0.5.

In the following sections, I first introduce three spatial models that can accommodate

firm commonalities and then focus on two empirical examples of capital expenditure and
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(a) Cash Holding (b) Capital Expenditure

Figure 5: Residuals of TWFE Estimator exhibit spatial dependence

cash holding. I show that taking the spatial structure into account significantly changes

the economic meaning of widely used explanatory variables in current literature and

provides a more complete picture of the relationship among firms.

5.2 Spatial Regression Model

Different types of spatial dependence can be modeled in different ways. The simplest form

of spatial dependence is modeled by the spatial autoregressive model (SAR). Equation 4

defines the regression form:

Yit = ρ
∑
j

WijYjt +Xitβ + εit

E [εit|X,W ] = 0

(4)

In addition to the spatial autoregressive term of the dependent variable, if there is also

spatial spillover of the covariates, then we extend the SAR to the spatial Durbin model

(SDM). The model form is:

Yit = ρ
∑
j

WijYjt +Xitβ + θ
∑
j

WijXjt + εit

E [εit|X,W ] = 0

(5)
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On the other hand, if there is spatial autocorrelation in the disturbance term, then the

basic model extends to the spatial autoregressive combined model (SAC) which follows:

Yit = ρ
∑
j

WijYjt +Xitβ + εit

εit = λ
∑
j

Wijεjt + uit

E [uit|X,W ] = 0

(6)

In the following empirical examples, I estimate all three forms of spatial regression

models.

5.3 Example 1: Capital Expenditure

There is a number of recent literature focusing on the relationship between firms’ in-

vestment spending (proxied by capital expenditure) and cash flow (Güner, Malmendier,

and Tate (2008), Gatchev, Pulvino, and Tarhan (2010)4). However, models that do not

acknowledge the interdependent nature of firms’ investments lead to an incomplete and

potentially misleading view of firm behavior. In this section, I examine the results of

commonly used regressions of capital expenditure and show the importance of the spatial

structure.

Table 4 shows the results of fixed effects models and spatial models. One thing we

have to note here is that the point estimates of TWFE models are not directly comparable

with the spatial regression estimates. As I discuss in appendix B, the coefficient reported

in the TWFE estimator measures the direct effect ∂yit
∂xit

, which is unequal to coefficient βk

in spatial regression. To make the βk in spatial regression comparable with the TWFE

estimator, we need to calculate the direct effects of the spatial regression as well. The

direct effects of explanatory variable Xk is (IN − ρW )−1 βk and the average direct effects

is the mean of the main diagonal elements, i.e. tr(IN−ρW )−1

N
βk. For example, in the fourth

column, when ρ = 0.95, the multiplier is equal to 1.026.

Comparing the last three columns with the fixed effects models, we can see that after

incorporating the spatial structure, the point estimates of our variable of interest, i.e.,

cash flow to asset, decrease by half. I also find significant comovement of firms’ capital

4Gatchev, Pulvino, and Tarhan (2010) find a cash flow to asset coefficient of 0.0893, while Güner,
Malmendier, and Tate (2008) report a slightly higher coefficient at 0.1199.
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expenditure and cash flow which are reflected in ρ and θ.

The decrease in point estimates has significant economic implications. Specifically,

within the firm fixed effects model, a one standard deviation shift in the cash flow to

asset ratio is typically linked with a corresponding 0.14 standard deviation shift in capi-

tal expenditure. Conversely, in the Spatial Durbin Model (SDM), a similar one standard

deviation variation in the cash flow to asset ratio is linked with a smaller average change

of 0.066 in capital expenditure. Moreover, one standard deviation change in the capi-

tal expenditure of a peer firm is associated with an average change of 0.043 in capital

expenditure, which is around two-thirds of the effect size of the impact of cash flow.
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Table 4: Estimates of Spatial Regressions of Capital Expenditure

This table presents estimation results of capital expenditure in a spatial panel-data regression described

in equation 4, 5, and 6. All variables are defined in table A.1. Standard errors are clustered at firm level.

***, **, * represents statistically significance at 10%, 5%, and 1% respectively.

Capx Capx Capx Capx Capx
FirmFE TWFE SAR SDM SAC

Main regression parameters β:

Cash flow to asset 0.1267∗∗∗ 0.1127∗∗∗ 0.0603∗∗∗ 0.0615∗∗∗ 0.0600∗∗∗

(5.82) (5.16) (4.48) (4.36) (4.33)
Cash to asset ratio -0.0306∗∗∗ -0.0277∗∗∗ -0.0241∗∗∗ -0.0221∗∗∗ -0.0225∗∗∗

(-6.37) (-5.85) (-5.33) (-4.94) (-4.96)
Market-to-book ratio 0.0013∗∗∗ 0.0018∗∗∗ 0.0016∗∗∗ 0.0014∗∗∗ 0.0015∗∗∗

(3.90) (5.60) (5.34) (4.48) (4.68)
Book Leverage -0.0134∗∗∗ -0.0107∗∗∗ -0.0079∗∗∗ -0.0075∗∗∗ -0.0078∗∗∗

(-7.24) (-6.08) (-5.07) (-4.79) (-4.84)
Size -0.0031∗∗∗ -0.0011 -0.0013 -0.0027∗∗ -0.0026∗∗

(-4.36) (-1.20) (-1.85) (-3.17) (-3.09)
Net working capital -0.0121∗∗ -0.0091∗ -0.0081∗ -0.0080∗ -0.0082∗

(-3.12) (-2.38) (-2.24) (-2.20) (-2.24)
R&D expenditure 0.0612∗∗∗ 0.0441∗∗∗ 0.0440∗∗∗ 0.0454∗∗∗ 0.0452∗∗∗

(6.56) (4.87) (4.89) (4.92) (4.93)
Financing cash flow 0.0137∗ 0.0187∗∗ 0.0162∗∗ 0.0155∗∗ 0.0158∗∗

(2.39) (3.30) (3.19) (2.97) (3.05)
Dividend payment 0.519∗∗∗ 0.402∗∗∗ 0.375∗∗∗ 0.366∗∗∗ 0.363∗∗∗

(13.23) (11.40) (11.30) (10.88) (10.82)
Acquisition expense 0.0120∗ -0.0120∗ -0.0114∗ -0.0091 -0.0090

(2.23) (-2.08) (-2.26) (-1.69) (-1.73)

Firm Fixed Effect ✓ ✓ ✓ ✓ ✓
Quarter Fixed Effect ✓

Spatial correlation parameters:

Dep. Var. ρ 0.953∗∗∗ 0.940∗∗∗ 0.885∗∗∗

(70.53) (79.76) (40.08)
Error term λ 0.873∗∗∗

(41.27)

Covariates θ:

Cash flow to asset -0.154∗

(-1.96)
Other covariates ✓

Direct effects (average of main diagonal (IN − ρW )−1βk):

Cash flow to asset 0.0610∗∗∗ 0.0581∗∗∗ 0.0596∗∗∗

(4.21) (4.01) (4.06)

Number of obs. 31,880 31,880 31,880 31,880 31,880
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5.4 Example 2: Cash holding

Determinants of firm cash holding is another prevailing topic in empirical corporate fi-

nance. McLean (2011) divide the source of firm cash holding into four categories, includ-

ing net equity issuance, net debt issuance, cash flow from operation, and other source.

The paper then studies the share issuance–cash savings relation in a single equation static

regression model. As we have seen in the previous sections, cash holding exhibits sig-

nificant spatial dependence. Therefore, to provide a complete picture of cash holding

motives, I apply the spatial regression model to cash holding and underscore its impor-

tance.

Table 5 shows the result. The point estimates of the main explanatory variables do

not vary a lot. However, the spatial regression illustrates two important features of firm

cash holding. First, comparing the SAC and SAR model, the spatial autocorrelation

coefficient of Yjt (i.e., ρ ) becomes insignificant after adding spatial dependence of the

disturbance term (i.e., λ). This suggests that firms do not affect each other’s cash holding

directly, rather it is more likely that firms experience common shocks to their cash holding.

Second, although a firm’s own net equity issuance and cash flow to asset have significant

positive effects on its cash holding, we obtain significant negative θ for these two variables.

This suggests a squeezing effect from competition, where other firms’ equity issuance or

the increase in their operating cash flow is negatively associated with my cash holding.
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Table 5: Estimates of Spatial Regressions of Cash Holdings

This table presents estimation results of the first difference of cash holdings in a spatial panel-data

regression described in equation 4, 5, and 6. All variables are defined in table A.1. Standard errors are

clustered at firm level. ***, **, * represents statistically significance at 10%, 5%, and 1% respectively.

∆Cash ∆Cash ∆Cash ∆Cash ∆Cash
FirmFE TWFE SAR SDM SAC

Main regression parameters β:

Net equity issuance 0.146∗∗∗ 0.142∗∗∗ 0.142∗∗∗ 0.144∗∗∗ 0.145∗∗∗

(13.78) (13.59) (13.58) (13.75) (13.71)
Net bond issuance 0.133∗∗∗ 0.132∗∗∗ 0.131∗∗∗ 0.132∗∗∗ 0.133∗∗∗

(15.43) (15.43) (15.36) (15.35) (15.52)
Cash flow to asset 0.198∗∗∗ 0.215∗∗∗ 0.207∗∗∗ 0.225∗∗∗ 0.217∗∗∗

(5.81) (6.37) (6.14) (6.46) (6.15)
Other cash 0.00945 0.00234 0.00689 0.00441 0.00498

(0.76) (0.19) (0.55) (0.36) (0.40)
Market-to-book ratio -0.00264∗∗∗ -0.00222∗∗∗ -0.00244∗∗∗ -0.00219∗∗∗ -0.00249∗∗∗

(-5.46) (-4.61) (-5.14) (-4.57) (-4.99)
Size 0.00713∗∗∗ 0.00786∗∗∗ 0.00717∗∗∗ 0.00762∗∗∗ 0.00709∗∗∗

(7.09) (6.48) (7.19) (7.08) (6.07)
Net working capital -0.0778∗∗∗ -0.0788∗∗∗ -0.0766∗∗∗ -0.0765∗∗∗ -0.0787∗∗∗

(-14.77) (-14.65) (-14.65) (-14.59) (-14.52)
Capital expenditure -0.0301 -0.0628∗∗ -0.0294 -0.0499∗∗ -0.0482∗

(-1.84) (-3.17) (-1.83) (-2.86) (-2.48)
Book leverage 0.00405 0.00257 0.00326 0.00291 0.00288

(1.95) (1.20) (1.57) (1.40) (1.32)
Dividend payment 0.256∗∗∗ 0.247∗∗∗ 0.256∗∗∗ 0.259∗∗∗ 0.249∗∗∗

(5.04) (4.89) (5.09) (5.10) (4.85)
R&D expenditure -0.0186 -0.0195 -0.0181 -0.0179 -0.0206

(-0.91) (-0.96) (-0.90) (-0.89) (-1.01)
Acquisition expense -0.212∗∗∗ -0.212∗∗∗ -0.209∗∗∗ -0.212∗∗∗ -0.213∗∗∗

(-19.14) (-19.07) (-18.95) (-19.03) (-18.91)

Firm Fixed Effect ✓ ✓ ✓ ✓ ✓
Quarter Fixed Effect ✓

Spatial correlation parameters:

Dep. Var. ρ 0.602∗∗∗ 0.553∗∗∗ 0.0174
(21.76) (17.52) (0.17)

Error term λ 0.666∗∗∗

(15.07)
Covariates θ:
Net equity issuance -0.125∗∗

(-2.91)
Net bond issuance -0.0353

(-0.98)
Cash flow to asset -0.432∗∗∗

(-5.51)
Other cash 0.0969

(1.04)

Number of obs. 22,640 22,640 22,640 22,640 22,640
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6 Two-way Clustering and its Failure

A vast stream of finance literature has been taking care of the correlations in residuals by

using firm-clustered standard errors. However, firm-clustered standard errors only allow

residuals to be correlated within a firm, not across firms. Therefore, the previous problem

still exists and leads to an over-rejection. An alternative is to cluster on time dimension,

however, this method also fails under practical circumstances.

I illustrate the problem with two-way clustering standard errors through a simulation

study that focuses on the panel data setting where both spatial dependence and fixed

effects are present. Specifically, the data-generating process follows

Yit = βXit + εit

Xit =
∑
j

ϕWijXjt + Zit

Zit = αi + hit

εit =
∑
j

λWijujt + uit

uit = γi + vit

(7)

where αi
iid∼ N (0, σ2

α), hit
iid∼ N (0, σ2

h), γi
iid∼ N (0, σ2

γ), vit
iid∼ N (0, σ2

v) and Wij is the com-

monality score I describe above. The default values of parameters are as following: β = 0,

σ2
α = 0.5, σ2

h = 0.5, σ2
γ = 0.5, σ2

v = 0.5. In the benchmark setting, the panel consists of

a fully balanced panel with 1000 firms and 40 quarters. For the spatial autocorrelation

coefficients, I assign three discrete values to ϕ and λ: 0, 0.8 and 0.9, respectively rep-

resenting the cases of no connection, mild connection, and strong connection. A spatial

autoregression coefficient of 0.8 may seem high at first glance, but it actually corresponds

to an average pairwise correlation of only 0.028, mirroring the typical pairwise correlation

observed in our dataset.

In the data-generating process 7, the independent variable Yit and dependent variable

Xit are spatially correlated and have unobserved heterogeneity components. It indicates

that both variables have a correlation among firms and across time. As suggested by

Petersen (2008), we can implement two-way clustering to address the correlation issue on

these dimensions.

Table 6 presents the simulated rejection rates of the benchmark specifications. We
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can see that under the benchmark setting, clustering only at the firm dimension is not

enough as it leads to higher rejection rates when spatial dependence exists. However,

under the benchmark case, two-way clustered standard errors correctly reject roughly 5%

of the samples.

Table 6: Rejection rates of Panel Simulation with Benchmark Specification

This table presents rejection rates of the coefficient β in the panel regression Yit = βXit + FEs + εit.

Both εit and Xit follow the data-generating process described in equation 7. The true value of β is

0. The null hypothesis is H0 : β = 0 and the alternative hypothesis is H1 : β ̸= 0. Column (2) and

(3) control for only firm fixed effects while column (4) and (5) control for both firm and quarter fixed

effects. Column (2) and (4) use firm-clustered standard errors and column (3) and (5) use firm- and

quarter-clustered standard errors. All simulations are run 1000 times. The significance level is 5%.

Parameters FE[F]V[F] FE[F]V[FT] FE[FT]V[F] FE[FT]V[FT]

ϕ = 0, λ = 0 0.049 0.058 0.047 0.063
ϕ = 0, λ = 0.8 0.047 0.059 0.046 0.064
ϕ = 0, λ = 0.9 0.050 0.057 0.050 0.055
ϕ = 0.8, λ = 0 0.046 0.061 0.049 0.068
ϕ = 0.8, λ = 0.8 0.109 0.053 0.086 0.056
ϕ = 0.8, λ = 0.9 0.267 0.061 0.188 0.054
ϕ = 0.9, λ = 0 0.049 0.055 0.055 0.074
ϕ = 0.9, λ = 0.8 0.267 0.060 0.200 0.063
ϕ = 0.9, λ = 0.9 0.519 0.055 0.424 0.049

According to White (2014), Cameron and Miller (2015) and MacKinnon, Nielsen,

and Webb (2023), two-way clustered standard errors are only consistent under three key

assumptions:

• The number of clusters goes to infinity.

• The correlation within clusters is identical.

• The number of observations in each cluster are same.

If either of the assumptions is violated, we do not obtain a consistent estimate of standard

errors. In the subsequent three subsections, I show the simulation results of two-way

clustering standard errors when these assumptions are relaxed.

6.1 Short panel

Angrist and Pischke (2009) and Donald and Lang (2007) suggest that the number of

clusters should be greater than 50 for good practical performance of clustering standard
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errors. Unfortunately, this is not always feasible in empirical corporate finance research

since many firm fundamentals are only reported annually. In the simulation, I restricted

the length of the dataset to 10 to mimic the situation empirical researchers often face.

Table 7 presents the results with a short panel dataset. Contrary to the benchmark

case, two-way clustering standard errors also suffer the over-rejection problem now, es-

pecially when spatial autocorrelation is present.

Table 7: Rejection rates of Panel Simulation with 10 Quarters

This table presents rejection rates of the coefficient β in the panel regression Yit = βXit + FEs + εit.

Compared to the benchmark specification, the length of the panel is shorten to 10 quarters. Both εit

and Xit follow the data-generating process described in equation 7. The true value of β is 0. The null

hypothesis is H0 : β = 0 and the alternative hypothesis is H1 : β ̸= 0. Column (2) and (3) control for

only firm fixed effects while column (4) and (5) control for both firm and quarter fixed effects. Column

(2) and (4) use firm-clustered standard errors and column (3) and (5) use firm- and quarter-clustered

standard errors. All simulations are run 1000 times. The significance level is 5%.

Parameters FE[F]V[F] FE[F]V[FT] FE[FT]V[F] FE[FT]V[FT]

ϕ = 0, λ = 0 0.048 0.075 0.049 0.065
ϕ = 0, λ = 0.8 0.053 0.076 0.049 0.085
ϕ = 0, λ = 0.9 0.047 0.075 0.050 0.077
ϕ = 0.8, λ = 0 0.053 0.082 0.048 0.073
ϕ = 0.8, λ = 0.8 0.109 0.090 0.094 0.089
ϕ = 0.8, λ = 0.9 0.252 0.189 0.187 0.180
ϕ = 0.9, λ = 0 0.048 0.084 0.050 0.084
ϕ = 0.9, λ = 0.8 0.256 0.199 0.178 0.201
ϕ = 0.9, λ = 0.9 0.522 0.397 0.436 0.393

6.2 Unbalanced panel

Besides the short panel, another common feature in the empirical corporate finance

dataset is the unbalanced panel. Table 8 lists the number of Russell 3000 constituents

in the Compustat database at the end of each year from 2013 to 2022. We can see that

the number of firms shows considerable variation and the number of firms in 2013 is only

72% of the number in 2022.

In the cross-sectional case, MacKinnon and Webb (2017) and Djogbenou, MacKinnon,

and Nielsen (2019) show that unequal size of clusters can lead to over-rejection of clustered

standard errors. I extend their simulation to the panel setting with the corporate dataset.

Table 9 presents my simulation results with an unbalanced panel. The specification in
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Table 8: Number of Russell 3000 constituents available in Compustat

This table presents the number of Russell 3000 constituents in Compustat database at the end of each

year from 2013 to 2022.

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

No. Firms 1977 2041 2122 2209 2302 2424 2622 2696 2764 2743

table 9 is identical to the baseline specification except that the number of firms for each

quarter now follows table 8.

As one would expect, neither firm clustered standard errors nor two-way clustering

standard errors are correct under the setting. Notably, even when one of the spatial

autocorrelation coefficients is zero, these standard errors still lead to the over-rejection

problem, even though the magnitude is not large.

Table 9: Rejection rates of Panel Simulation with unbalanced dataset

This table presents rejection rates of the coefficient β in the panel regression Yit = βXit + FEs + εit.

Compared to the benchmark specification, the number of firms for each quarter follows table 8. Both εit

and Xit follow the data-generating process described in equation 7. The true value of β is 0. The null

hypothesis is H0 : β = 0 and the alternative hypothesis is H1 : β ̸= 0. Column (2) and (3) control for

only firm fixed effects while column (4) and (5) control for both firm and quarter fixed effects. Column

(2) and (4) use firm-clustered standard errors and column (3) and (5) use firm- and quarter-clustered

standard errors. All simulations are run 1000 times. The significance level is 5%.

Parameters FE[F]V[F] FE[F]V[FT] FE[FT]V[F] FE[FT]V[FT]

ϕ = 0, λ = 0 0.049 0.060 0.046 0.052
ϕ = 0, λ = 0.8 0.055 0.081 0.057 0.077
ϕ = 0, λ = 0.9 0.057 0.081 0.059 0.084
ϕ = 0.8, λ = 0 0.046 0.055 0.045 0.067
ϕ = 0.8, λ = 0.8 0.120 0.118 0.118 0.109
ϕ = 0.8, λ = 0.9 0.270 0.140 0.198 0.137
ϕ = 0.9, λ = 0 0.049 0.062 0.053 0.055
ϕ = 0.9, λ = 0.8 0.272 0.150 0.201 0.153
ϕ = 0.9, λ = 0.9 0.510 0.152 0.420 0.133

6.3 Time-varying correlation

Another problem with two-way clustering standard errors is that the intra-cluster correla-

tion may not be constant (Carter, Schnepel, and Steigerwald (2017)). Take the corporate

landscape as an example, the commonality score among firms is actually time-varying
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(Hoberg and Phillips (2010, 2016)), and thus the correlation is time-varying as well. This

suggests that the traditional two-way clustering standard errors may lead to a biased

estimate of the standard error.

Table 10 presents the results when the commonality score is time-varying. The spec-

ification in table 10 is identical to the baseline specification except that I replace the

median commonality score Wij by the commonality score for each year Wij,t. Theover-

rejection problem here is so severe that firm-clustered standard errors reject up to 95%

and the two-way clustering standard errors over-reject up to seven fold.

Table 10: Rejection rates of Panel Simulation with time-varying Commonality

This table presents rejection rates of the coefficient β in the panel regression Yit = βXit + FEs +

εit. Compared to the benchmark specification, the median firm commonality Wij is replaced by firm

commonality for each year Wij,t. Both εit and Xit follow the data-generating process described in

equation 7. The true value of β is 0. The null hypothesis is H0 : β = 0 and the alternative hypothesis is

H1 : β ̸= 0. Column (2) and (3) control for only firm fixed effects while column (4) and (5) control for

both firm and quarter fixed effects. Column (2) and (4) use firm-clustered standard errors and column

(3) and (5) use firm- and quarter-clustered standard errors. All simulations are run 1000 times. The

significance level is 5%.

Parameters FE[F]V[F] FE[F]V[FT] FE[FT]V[F] FE[FT]V[FT]

ϕ = 0, λ = 0 0.060 0.076 0.060 0.066
ϕ = 0, λ = 0.8 0.045 0.068 0.045 0.069
ϕ = 0, λ = 0.9 0.048 0.097 0.051 0.092
ϕ = 0.8, λ = 0 0.055 0.045 0.055 0.044
ϕ = 0.8, λ = 0.8 0.456 0.242 0.471 0.251
ϕ = 0.8, λ = 0.9 0.648 0.313 0.635 0.294
ϕ = 0.9, λ = 0 0.045 0.097 0.046 0.092
ϕ = 0.9, λ = 0.8 0.618 0.282 0.632 0.278
ϕ = 0.9, λ = 0.9 0.957 0.341 0.957 0.353

In conclusion, the simulation results show the unreliability of the clustering standard

errors in the panel setting with the presence of spatial dependence. Unfortunately, these

three cases commonly exist in real-world datatsets, and this calls for a better solution for

estimating the standard errors.
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7 Potential Solutions

7.1 Robustness check with spatial regressions

To address the potential bias in the estimates stemming from the spatial structure, we

can run a spatial regression as a robustness check. If the results of these two regressions

do not differ much, we are then confident that our estimates are reliable.

Note that for the spatial regression coefficient to be consistent, we need to specify

the spatial structure correctly. In this paper, I use the structure measured by Hoberg

and Phillips (2010) and Hoberg and Phillips (2016) which is generally accepted as a

reasonable characterization of firm connections. If we are willing to assume this is the

correct structure then our spatial regression estimates are correct.

After all, the true structure is extremely difficult to measure and the approximation

of it is itself another strand of research (De Paula, Rasul, and Souza (2018)). I leave this

topic for further exploration.

7.2 Bootstrapping standard errors

Another approach to resolve the concerns about spatial dependence is to use the resam-

pling methods, with bootstrapping being a notable example. Webb (2023) find that wild

bootstrapping can achieve the correct p-value even if the number of clusters is only 12.

MacKinnon, Nielsen, and Webb (2021) and Djogbenou, MacKinnon, and Nielsen (2019)

suggest that wild bootstrapping still works correctly even if the dataset has unequal size

of clusters.

Wild bootstrap is a bootstrapping method that randomly assigns weights to residu-

als in regression models. By resampling on residuals, the structure of variables is kept

untainted.

In this exercise, I obtain the fitted values and residuals from the restricted regression.

Specifically, I impose the restriction that β = 0 in the regression Yit = βXit + FEs+ εit.

The goal of the bootstrapping is to obtain the distribution under the null hypothesis

that β is equal to 0. Then, I calculate a new yit based on ỹit = ŷit + νitε̂it where ŷit is

the fitted value of the regression, ε̂it is the residuals and νit is the random weights to

residuals. I regress the ỹit back on Xit so that I obtain the bootstrapped distribution of

β and consequently p-value under the null hypothesis.
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I use the two-way resampling method to obtain random weights νit. To be specific,

I get νit is defined by νit = ξiζt where ξi and ζt independently follow the Rademacher

distribution. ξi and ζt independently follows the Rademacher distribution:

ξi or ζt =

 −1, with probability 0.5

1, with probability 0.5

The two-way resample method preserves both spatial dependence as well as time-

series structure. We can see in table 11, that the simulated rejection rate of the bootstrap

estimator is roughly 5%. Therefore, I propose using this two-way bootstrap rejection rate

when firm commonality is present.

5

Table 11: Rejection rates of Panel Simulation using Bootstrapping

This table presents rejection rates of the coefficient β in the panel regression Yit = βXit + FEs + εit.

Both εit and Xit follow the data-generating process described in equation 7. The true value of β is 0.

The null hypothesis is H0 : β = 0 and the alternative hypothesis is H1 : β ̸= 0. All simulations are

run 1000 times. Each bootstrapped t-value is calculated through resampling 399 times. The significance

level is 5%.

Parameters Dataset Double resample

ϕ = 0.8, λ = 0.8 Benchmark 0.035
ϕ = 0.9, λ = 0.9 Benchmark 0.037
ϕ = 0.8, λ = 0.8 Short Panel 0.039
ϕ = 0.9, λ = 0.9 Short Panel 0.035
ϕ = 0.8, λ = 0.8 Unbalanced Panel 0.038
ϕ = 0.9, λ = 0.9 Unbalanced Panel 0.038
ϕ = 0.8, λ = 0.8 Time-varying Correlation 0.040
ϕ = 0.9, λ = 0.9 Time-varying Correlation 0.037

7.3 Spatial dependence principal components

Besides the bootstrapping method, two recent papers (Müller and Watson (2022a,b))

propose another method that is able to account for spatial dependences. They show

that their estimator SCPC (spatial dependence principal components) is correct under

various settings with the presence of spatial dependence. This will be left to future

5The two-way clustering is also known as the pigeon hold bootstrap Owen (2007). Menzel (2021)
discusses in detail how to bootstrap with multiple cluster dependence.
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research. Further examination of this method will be left for future studies.

8 Conclusion

Firms do not operate in a vacuum and numerous studies have found that others’ char-

acteristics play an important role in firms’ decisions. This paper emphasizes the spatial

structure of the corporate landscape and its impact on statistical inferences. I show that

spatial structure significantly changes the result of commonly used variables, and even

in the presence of mild spatial dependence, the statistical significance of regressions is

highly inflated.

This paper offers some simple guidelines to improve the credibility of empirical re-

sults. First, we should be aware of the presence of spatial dependences and run spatial

diagnostics before regression. For instance, we should check Moran’I statistics. Second,

we should take care of the spillover effect from the spatial structure. For example, run

a robustness check with industry-mean or run a spatial regression aside from the main

regression. Third, with the presence of correlations, we should estimate standard errors

with the bootstrap method since clustering does not work properly. In sum, my findings

suggest the empirical results in corporate finance should be treated with caution, and we

should accommodate the firm commonality in our research framework.
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Appendix

A Variable Defination

In this section, I list the definitions of variables used in this article.

Table A.1: Defination of Variables

This table presents the definition of variables. Variable are defined by Compustat items.

Variable Definition

Capital expenditure capxy/l.atq
Cash to asset ratio cheq/atq
Cash flow to asset (oibdpq-xintq-txtq-dvy)/l.atq
Market-to-book ratio (atq-ceqq+prccq*cshoq)/atq
Book Leverage (dlttq+dlcq)/atq
Size ln(atq)
Net working capital ((atq-cheq)-(atq-dlcq-dlttq-mibq-pstkq-ceqq))/l.atq
R&D expenditure xrdq/l.saleq
Financing cash flow fincfy/l.atq
Dividend payment dvy/l.atq
Acquisition expense aqcy/l.atq
∆Cash (cheq-l.cheq)/l.atq
Net equity issuance (sstky-prstkcy)/l.atq
Net bond issuance (dltisy-dltry+dlcchy)/l.atq
Other cash (sppey+sivy)/l.atq
Tobin’s Q (atq-me-ceqq)/l.atq

B Consistency of the OLS estimator with presence

of spatial dependence in panel data

In this section, I extend the idea from Rüttenauer (2022) and Pace and LeSage (2010)

to the panel data framework. I suppose the N ×N commonality score matrix W is ex-

ogenously determined, observed, and time-invariant. For simplicity of notation, I assume

the dataset is already demeaned on the corresponding fixed effects. The data-generating
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process of {Yi} follows

Yi = ρ
∑
j

WijYj +Xiβ +
∑
j

WijXiθ + εi

εi = λ
∑
j

Wijεj + ui

ui|Xi
iid∼ N (0,Σi)

(B.1)

where Σi is a T × T covariance matrix of error terms uit on time dimension.

Define a NT×1 vector Y = vec(Yi) in which the first T elements (Y0∗N+1, . . . , Y0∗N+T )

denote the values of Firm 1 from period 1 to T , the next T elements (Y1∗N+1, . . . , Y1∗N+T )

denote the values of Firm 2 from period 1 to T , so on. Then equation B.1 can be rewritten

as

Y =
(
INT − ρW̃

)−1
(
Xβ + W̃Xθ +

(
INT − λW̃

)−1

u

)
(B.2)

where X = vec(Xi), u = vec(ui), and W̃ = IT ⊗W .

Now we look at the OLS estimator. Since the data is already demeaned, the OLS

estimator here is equivalent to the TWFE estimator of the undemeaned dataset.

β̂OLS =
(
X⊤X

)−1
X⊤Y

=
(
X⊤X

)−1
X⊤

(
IN − ρW̃

)−1
(
Xβ + W̃Xθ +

(
IN − λW̃

)−1

u

)
=
(
X⊤X

)−1
X⊤R̃ρXβ +

(
X⊤X

)−1
X⊤R̃ρW̃Xθ +

(
X⊤X

)−1
X⊤R̃ρR̃λu

(B.3)

where R̃ρ =
(
INT − ρW̃

)−1

and R̃λ =
(
INT − λW̃

)−1

.

Because ui|Xi and uj |Xj are independently distributed and E [ui|Xi] = 0, we can

find that

lim
NT→∞

(
X⊤X

)−1
X⊤R̃ρR̃λu = 0
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B.1 Spatial-independent explanatory variables

Assume Xi identically and independently follow standard normal distribution, according

to Barry and Pace (1999) and Girard (1989), we can obtain the expectation and the

variance of
(
X⊤X

)−1
X⊤AX for any real symmetric matrix A:

E
[
X⊤AX

]
=

tr(A)

NT
≡ µA

σ2
[
X⊤AX

]
=

2tr(A2)

(NT )2

E
[(
X⊤X

)−1
X⊤AX

]
= µA

σ2
[(
X⊤X

)−1
X⊤AX

]
=

2Var(λA)

NT + 2
≡ d2A

(B.4)

where Var(λA) is the ”population variance” of eigenvalues of matrix A, i.e. Var(λA) =∑
i

∑
t(λit − µA)

2/NT and λi are eigenvalues of matrix A.

Recall W̃ = IT ⊗W . Therefore

tr
(
R̃ρ

)
=tr

(
IT ⊗ (IN − ρW )−1

)
=T · tr

(
IT ⊗ (IN − ρW )−1

)
≡ T · tr (Rρ)

Var
(
λW̃
)
=

∑
i

∑
t(λit − µW̃ )2

NT

=

∑
i(λi − µW )2

N
= Var(λW )

(B.5)

When N is fixed but T goes to infinite, we can immediately find that limT→∞ d2A → 0

for any real symmetric matrix A. Therefore,

lim
T→∞

β̂OLS p−→ tr(Rρ)

N
β +

tr(RρW )

N
θ (B.6)

WhenN goes to infinite, σ2[X⊤
i Xi] → 0 becauseXi are independently and identically

distributed. According to Slutsky’s theorem,

lim
N→∞

(
X⊤X

)−1
X⊤R̃ρX =

tr(Rρ)

N
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Then

lim
N→∞

β̂OLS p−→ tr(Rρ)

N
β +

tr(RρW )

N
θ (B.7)

B.2 Spatial-dependent explanatory variables

If explanatory variables Xi are spatially correlated, the OLS estimator is no longer con-

sistent in estimating the direct effects. When Xi|W and ε|W are not independent, there

exists omitted variable bias which leads to the inconsistency of the OLS estimator.

Specifically, I assume Xi follows the data-generating process:

Xi = ϕ
∑
j

WijXj +Zi (B.8)

where Zi is i.i.d. normal distribution. Similarly, we stack Xi and Zi and denote X =

vec (Xi) and Z = vec (Zi). We can rewrite it as X = R̃ϕZ where R̃ϕ =
(
INT − ϕW̃

)−1

.

Following Pace and LeSage (2010), we can find that for any real symmetric matrix A

(
X⊤X

)−1
X⊤AX

=
(
Z⊤R̃⊤

ϕ R̃ϕZ
)−1

Z⊤R̃⊤
ϕAR̃ϕZ

=

(
Z⊤Z

)−1
Z⊤R̃⊤

ϕAR̃ϕZ

(Z⊤Z)−1Z⊤R̃⊤
ϕ R̃ϕZ

When N is fixed but T goes to infinity, equation B.4 and B.5 guarantee that both the

variance of the nominator and denominator converges to zero. Using Slutsky’s theorem,

we have

lim
T→∞

(
X⊤X

)−1
X⊤AX =

tr(R̃⊤
ϕAR̃ϕ)

tr(R̃⊤
ϕ R̃ϕ)

=
tr(R⊤

ϕARϕ)

tr(R⊤
ϕRϕ)

which implies

lim
T→∞

β̂OLS =
tr(R⊤

ϕRρRϕ)

tr(R⊤
ϕRϕ)

β +
tr(R⊤

ϕRρWRϕ)

tr(R⊤
ϕRϕ)

θ (B.9)
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When N goes to infinity, according to equation B.4

Var
(
Z⊤R̃⊤

ϕ R̃ϕZ
)
=

2tr
(
R̃⊤

ϕ R̃ϕR̃
⊤
ϕ R̃ϕ

)
(NT )2

=
2tr
(
R⊤

ϕRϕR
⊤
ϕRϕ

)
N2

−→ 0

Therefore we can apply Slutsky’s theorem and obtain that

lim
N→∞

β̂OLS =
tr(R⊤

ϕRρRϕ)

tr(R⊤
ϕRϕ)

β +
tr(R⊤

ϕRρWRϕ)

tr(R⊤
ϕRϕ)

θ (B.10)

B.3 Firm-clustered standard error

In this subsection, I calculate the firm-clustered standard error when error terms are

spatially correlated. I assume the following data-generating process,

Yi = Xiβ + εi

εi = λ
∑
j

Wijεj + ui

ui|Xi
iid∼ N (0,Σi)

(B.11)

The OLS estimator here is an unbiased and consistent estimator of β.

β̂OLS = β +
(
X⊤X

)−1
X⊤ε

Then we rearrange the formula as

β̂OLS − β =

(∑
i

X⊤
i Xi

)−1∑
i

X⊤
i εi

Define ε = vec(εi), u = vec(ui), and Σ = diag(Σi),

ε =
(
INT − λW̃

)−1

u = R̃λu (B.12)

where R̃λ =
(
INT − λW̃

)−1

.

Since ui and uj are independent and ui follows a normal distribution with Σi as the
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covariance matrix, we can obtain the variance of β̂OLS by

Var(β̂OLS) = E
[(
X⊤X

)−1
X⊤R̃⊤

λ εε
⊤R̃λX

(
X⊤X

)−1
]

However, the estimated firm-clustered standard error will be

V̂ar
Firm

(β̂OLS) =
N − 1

N

(
X⊤X

)−1
∑
i

(
X⊤

i ε̂iε̂
⊤
i Xi

) (
X⊤X

)−1

In empirical research, the autocorrelation of error terms is most likely positive but smaller

than 1. I assume that all elements in W are non-negative, the maximum and principle

eigenvalue of W equals 1 (if not, we normalize W by its principle eigenvalue) and λ ∈

(0, 1). This condition implies

R̃⊤
λΣR̃λ − diag

(
E
[
ε̂iε̂

⊤
i

])
is a positive definite matrix

where ε̂i = Rλ,iiui.

Every elements on the main diagonal of Var(β̂OLS) is larger than V̂ar
Firm

(β̂OLS). It

suggests that firm-clustering standard error will underestimate the variance if spatially

correlated error terms exist.

C Standardized Model

Another type of commonly used spatial autoregressive model in the econometrics liter-

ature is the standardized spatial autoregressive model. Th model assumes variable Xi

follows a stationary Gaussian process. Specifically, the vector of variable X follows the

data generating process:

X ∼ N (0,Σ)

Σij = e−δ|si−sj |

si
iid∼ U (0, 1)

(C.1)

where δ > 0 measures the strength of spatial dependence and higher δ indicates a lower

spatial dependence.

A standardized spatial autoregressive model is a spatial equivalent of a time-series
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autoregressive model. Recall time-series AR(1) process follows yt = (1 − ψ)µ + ψyt−1 +

εt, and its autocovariance Kh = cov(yt, yt−h) = ψhσ2
y decreases exponentially with the

temporal distance h.

Analogous to the time-series autoregressive model, the standardized model assumes

the covariance matrix of the standardized spatial autoregressive model also follows an

exponential function whose base is e−δ and whose index is the spatial distance |si − sj|.

Figure C.1 displays the relationship between the strength of spatial dependence δ and

average pair-wise correlation. A spatial strength δ = 20 implies an average pair-wise

correlation of 0.1, which is equivalent to an average autocovariance of 0.1 in a time-series

AR(1) process with T = 100 periods and ρ = e−δ/(T−1) = 0.82.

Figure C.1: Average pair-wise correlation in Standardized model

I illustrate the over-rejection problem with the standardized model as well. Similar

to figure ??, figure C.2 presents rejection rates of the coefficient β in the cross-sectional

regression Yi = βXi+ εi, where εi and Xi follow the data-generating process described in

equation C.1 and the true value of β is 0. I test the null hypothesis H0 : β = 0 against

the alternative hypothesis H1 : β ̸= 0 and run the simulations 199 times. Standard

errors are heteroskedasticity-robust and the significance level is 5%. we observe the same
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pattern as in figure ??, as the variables become more spatially dependent, the rejection

rate increases rapidly to 100% and the over-rejection problem always exists as long as

spatial dependence is present.

Table C.1: Rejection rates of t-test in the presence of spatial correlation

This table presents rejection rates of the student’s t-test for the standardized model (data generating

process described in equation C.1). The expectation of Xi is 0. The null hypothesis is H0 : X̄ = 0 and

the alternative hypothesis is H1 : X̄ ̸= 0 where X̄ =
∑N

i=1 Xi

N . All simulations are run 1000 times. The

significance level is 5%.

Parameter δ Rejection Parameter δ Rejection

1 0.963 15 0.839
2 0.956 20 0.820
3 0.945 30 0.760
4 0.933 40 0.724
5 0.925 50 0.678
6 0.913 60 0.642
7 0.894 70 0.627
8 0.885 80 0.613
9 0.876 90 0.603
10 0.870 100 0.576

Figure C.2: Rejection rates of cross-sectional regressions in standardized
model
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